
A Survey of Messaging Protocols for IoT Systems
Sagar P Jaikar

#
, Dr. Kamatchi R. Iyer

 *

#
 Research Scholar (CSE), Amity University Mumbai

*
HOI, Amity School of Engineering and Technology (ASET), Amity University Mumbai

Abstract— IoT is gaining popularity day by day; every object

surrounding us is interacting among them. These objects can be

your mobile phones, sealing fan, door bell or it can be anything

you could imagine. The network of everything is growing rapidly

with heterogeneous objects or devices. But the main concern is

how they are communicating with each other? What protocols

they are using? As we know that these devices are very

constrained with respect to power, communication & processing

potential, we cannot use standard communication protocols that

we are using over internet. We need different set of protocols

which could fit in the IoT scenario focusing on conserving power

& having small payload size. As various IoT systems are

different in nature with different messaging requirements, it is

very challenging to choose appropriate messaging protocol.

Different IoT protocols have emerged with everyone having their

advantages & disadvantages but IoT industry is facing a

selection conundrum as these protocols will not fit into each and

every scenario. In this paper we are studying various messaging

protocols, so that we can decide upon appropriate protocol based

on application needs.

Keywords— IoT, MQTT, CoAP, XMPP, DDS, AMQP

I. INTRODUCTION

The IoT enables objects to interact with each other, to

exchange information for decision making. The IoT

transforms these objects from simple traditional objects to

smart objects by exploiting its underlying technologies. But

these objects are heterogeneous objects & depending upon

application requirements they will use different

communication protocols. So selecting messaging protocol is

very tedious task. [12] To select efficient messaging protocol,

first we need to understand messaging requirements of IoT

system.

For Internet based communications, we mostly use HTTP

as standard protocol, but that is not the case for IoT systems.

We cannot use HTTP as a standard protocol for all IoT

systems. [13] Considering this various protocols has been

designed to meet different needs of IoT systems. To meet the

need for reliable & fast communications, protocol like AMQP

is designed. [3] [6]

For communication in constrained networks, MQTT &

CoAP are proposed. [7][8][9] Few protocols are also designed

to suit instant messaging needs. XMPP falls in this category.

[3] Some protocols are designed for simple communication

over internet which supports client/server type architecture.

To name few HTTP, CoAP is among them. [7][10] So it is

clear that various protocols are proposed for IoT systems

which have different pros & cons. In this paper we are

discussing few of them & in later section we have compared

them for users to make an appropriate choice of protocol

suiting their application needs.

II. IOT MESSAGING PROTOCOLS

A communication protocol is nothing but a language that is

used by objects to interact among them. In simple words, a

protocol is a set of rules that must be obeyed by the

communicating objects. Communication Protocols are

extremely essential in heterogeneous systems; where the

objects interacting may be heterogeneous in nature, needing a

common framework for them to interact.

A. MQTT (Message Queuing Telemetry Transport Protocol)

MQTT is a lightweight machine to machine communication

protocol designed for connecting small devices to constrained

networks. It follows publish/subscribe model for

communication. It is very simple protocol which uses 2 byte

header & in binary in nature. MQTT is reliable & connection

oriented as it uses TCP. MQTT is generally employed in the

scenario where we have large network of small devices which

are maintained from single server. To provide QoS it has three

different levels namely At most once, At least once & exactly

once. [9]

Fig. 1 Working of MQTT Protocol

These levels give the assurance about the message delivery.

MQTT is not suitable for multicasting as well as device to

device communications. MQTT was proposed in 1999 by

Andy Stanford-Clark, IBM & Arlen Nipper, Arcom. Later on

it was accepted as standard in 2013. [7] It is similar to blogs,

where we can write something interesting that we would like

with specific topic name. So anyone who is interested in our

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue II, FEB/2018

ISSN NO : 2249-7455

http://ijamtes.org/510

Topic, can read the blog. This is exactly how the MQTT

works. In MQTT data blocks are sent by Publish message,

while they are received by Subscribe message. Here data is

identified by Topics. [10]

 MQTT architecture contains three elements: Publishers,

Broker, and Subscribers. Here Publishers are nothing but the

small sensors that collect the data and transmit it to the Broker.

However Subscribers are the applications which are interested

in the gathered data. As we know, data is identified by Topics;

Subscribers need to subscribe to particular Topic of interest to

receive the concerned data. Brokers categorises data according

to Topics & forwards it to subscribers interested in different

Topics. [6] MQTT brokers may go for authentication from

Subscribers to connect. To ensure privacy, the TCP

connection may be encrypted with SSL/TLS.

A variant of MQTT is Secure MQTT (SMQTT). It uses

attribute based encryption which allows broadcasting of

encrypted message to multiple nodes. SMQTT follows

symmetric encryption where Publishers & Subscribers need to

register themselves with the broker to obtain shared secret key.

Now Publishers will send encrypted data to broker which will

forward it to interested Subscribers, where it will be decrypted

with shared secret key. [6]

MQTT-SN is protocol specially designed for sensor

networks. It doesn’t use TCP as a transport protocol. As we

are aware of sensor nodes, they have very limited power

resources & very constrained processing capabilities. On the

other hand TCP is very heavy transport protocol. MQTT-SN

improves upon MQTT by using simple header, topic id’s

instead of topic names, error status & so on [6].

B. XMPP (Extensible Messaging and Presence Protocol)

Extensible messaging and presence protocol is designed to

address heterogeneity issue in IoT networks. It is developed in

1999 named as Jabber which it later standardized by IETF. [8]

Initially it was designed for messaging applications over

Internet. XMPP is real time communication protocol which

can be used for instant messaging, real time entertainment

applications & tele-presence. Google talk, Facebook chat are

examples where XMPP is used for real time messaging

service. XMPP is IP based communication protocol with

Extensible Mark up Language (XML) support. [8]

XMPP also uses Publish/Subscribe architecture like MQTT.

It also has support for Request/Response architecture. So it

gives flexibility to application developer to choose the proper

architecture as per need. Unlike MQTT it doesn’t provides

any QoS guarantees, so it is not suitable for M2M

communications. In XMPP, XML support addresses the

heterogeneity issue but on contrary it adds additional overhead

due to lot of tags & header formats which increases the power

consumption in IoT devices. [6] This problem can be resolved

by compressing XML streams using EXI. It supports sleeping

sensor nodes which can go into sleep mode periodically

leading to extended lifetime of IoT devices. It supports

periodic data transmission as well as event driven

transmission too. Openness, Scalability, Flexibility,

Extensibility are some of the key advantages of XMPP. [8]

XMPP allows heterogeneous devices to interact with each

other by sending instant messages over the Internet

irrespective of the underlying operating systems. XMPP is

very secure protocol which supports encryption,

authentication, and access control for the addition of different

new applications on top of the existing core protocols. [7]

Fig. 2 Working of XMPP Protocol

XMPP uses XML stanzas for client to server

communication. An XML stanza has three components:

message, presence, and iq (info/query). Here source and

destination addresses, types, and IDs are denoted by message

component. The presence field notifies the clients about status

updates. The iq field maps publishers & subscribers. [7]

C. CoAP (Constrained Application Protocol)

Constrained Application Protocol is synchronous Machine

to Machine communication protocol which supports

Publish/Subscribe as well as Resource/Observe architecture.

CoAP is provides interoperability for RESTful web & HTTP.

CoAP doesn’t use topics; it uses Uniform Resource Identifier

(URI).

In CoAP Publisher publishes data to the URI and subscriber

has to subscribes it from corresponding URI. Whenever new

data is published to the URI, all the subscribers are notified

about it. Similar to MQTT, CoAP is also a simple binary

protocol with fixed 4 byte header. As a transport protocol

CoAP uses UDP which means it is connectionless with less

reliability. Despite of this it uses two different QoS levels to

provide reliability namely ―Confirmable‖ & ―Non-

Confirmable‖. [9]

The strong security capabilities of CoAP make it a desired

choice among the available IoT protocols. For providing

security CoAP relies on Datagram Transport Layer Security

(DTLS). CoAP is more suitable for the IoT as it uses UDP.

However, CoAP works in presence of lossy and noisy links by

modifying some of the HTTP functionalities to meet the IoT

requirements such as low power consumption.

CoAP has two sub-layers, namely: the messaging sub-layer

and the request/response sub-layer. The task of detecting

duplications is done by messaging sub-layer. On other hand

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue II, FEB/2018

ISSN NO : 2249-7455

http://ijamtes.org/511

the request/response sub-layer is responsible for handling

REST communications. As in HTTP, CoAP uses methods

such as GET, PUT, POST and DELETE to perform Create,

Retrieve, Update and Delete operations. [7]

Fig. 3 Working of CoAP Protocol

D. HTTP (Hyper Text Transfer Protocol)

HTTP is specially designed for Internet. It was developed

by Tim Berners Lee & later standardized by IETF in 1997.

Though HTTP uses Request/Response architecture, it doesn’t

use topics. HTTP is based on Representational State Transfer

(REST), an architectural style that makes information

available as resources identified by URIs [18]. HTTP is

simple text based protocol where no fixed header size is

defined. It has features on persistent & non persistent

connections. By default TCP is used as HTTP’s transport

protocol, but HTTP doesn’t have any QoS support. [9]

HTTP is very powerful protocol, but it’s relatively

expensive in implementation and network resource usage.

This makes it difficult to adopt HTTP as it is for IoT networks.

HTTP transfers a large number of small packets over web but

overhead of HTTP causes many problems, such as

consumption of network resources and large delays. [10]

E. DDS (Data Distribution Service)

DDS is developed by Object Management Group for real-

time Machine to Machine communications. Like most other

M2M protocols DDS also supports Publisher/Subscriber

architecture. But unlike others it doesn’t uses broker based

architecture. Instead of broker, it uses multicasting to provide

QoS guarantees. The advantage of DDS is an excellent quality

of service levels and reliability guarantees. DDS architecture

defines two layers: Data-Centric Publish- Subscribe (DCPS)

which disseminates information to subscribers and Data-Local

Reconstruction Layer (DLRL) which is an optional and is an

interface to the DCPS functionalities. It shares data among

distributed objects. [7]

DCPS layer performs data distribution. Here data writer

communicates with the publishers about the data and changes

to be sent to the subscribers. While data readers read the

published data and deliver it to the subscribers.

Fig. 4 Working of DDS Protocol

Subscribers are the nothing but the receivers of the data to

be delivered to the IoT application. So the tasks of broker are

handled by data writers and data reader to support broker-less

architecture.

F. AMQP (Advanced Message Queuing Protocol)

AMQP is application layer protocol designed for message

oriented networks & it has a support for Publisher/Subscriber

architecture. It uses TCP as a transport protocol to provide

reliable communication. Besides this, to provide QoS

guarantees it has three levels of delivery namely at least once,

at most once & exactly once. Along with Publishers &

Subscribers it has two more components, Exchanges &

Message queues. Exchanges perform the routing functionality

by forwarding messages to appropriate message queues. These

messages can be stored into message queues before

forwarding it to Subscribers. AMQP uses two different

message types. First, bare messages which are used by

Publishers and second, annotated messages which are used by

Subscribers. [7]

Fig. 5 Working of AMQP Protocol

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue II, FEB/2018

ISSN NO : 2249-7455

http://ijamtes.org/512

TABLE I
COMPARATIVE ANALYSIS OF IOT MESSAGING PROTOCOLS

Sr.

No
Criteria MQTT XMPP CoAP HTTP DDS AMQP

1 Year 1999 1999 2010 1997 2004 2003

2 RESTful No No Yes Yes No No

3 Transport Protocol TCP TCP UDP TCP TCP/UDP TCP

4 Publish / Subscribe

Model

Yes Yes Yes No Yes Yes

5 Request / Response

Model

No Yes Yes Yes No No

6 Security SSL SSL DTLS SSL SSL / DTLS SSL

7 QoS Yes No Yes No Yes Yes

8 Header Size 2 - 4 - - 8

9 XML Support No Yes No Yes No No

10 Encoding Format Binary Character Binary Text Binary Binary

11 Default Port 1883/8883 5222/5223 5683/5684 80/443 7400/7401 5671/5672

12 Proxy Support Partial Yes Yes Yes Yes Yes

IoT has several messaging protocols which we discussed

in previous section. The choice among these protocols is

dependent on applications as they are very specific to

applications. MQTT stands tall among all the protocols &

is the most widely used in IoT due to various benefits such

as extremely low overhead and very less power

consumption. However, selection of protocols are highly

application sensitive. For example, if an application has

been built with XML and can accept a bit of overhead in its

headers, XMPP might be the best option to choose among

all protocols. On the other hand, if the application is really

overhead and power sensitive, then choosing MQTT would

be the best option, however, that comes with the additional

broker implementation. If the application requires REST

functionality as it will be HTTP based, then CoAP would

be the best option if not the only one.

III. CONCLUSIONS

In this paper we have analyzed & compared few of the

Messaging protocols for IoT systems but still there is no

perfect evaluation of all these protocols together. We have

discussed some of the well know IoT messaging protocols.

We started our discussion with MQTT & then we discussed

XMPP, CoAP, HTTP, DDS, and AMQP. Each of these

protocols has their different pros & cons. They are

designed for particular scenarios. So it is very difficult to

prescribe any single protocol for diverse IoT applications.

Also we performed comparative analysis of this protocol

which will help us to choose appropriate messaging

protocol depending upon application requirements. But as

we know that IoT is rapidly gaining popularity, the current

scenarios might not stand as it is in future. The significant

changes in underlying technology will make it interesting

to use & evaluate these protocols practically in near future.

We believe that this will be significant area of research in

future.

REFERENCES

[1] D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan,
―Performance evaluation of MQTT and CoAP via a common

middleware,‖ in Proc. IEEE 9th Int. Conf. ISSNIP, 2014, pp. 1–6.

[2] L. Tan and N. Wang, ―Future Internet: The Internet of Things,‖ in
Proc.3rd ICACTE, 2010, pp. V5-376–V5-380.

[3] P. Lopez, D. Fernandez, A. J. Jara, and A. F. Skarmeta, ―Survey of

Internet of Things technologies for clinical environments,‖ in Proc.
27th Int. Conf WAINA, 2013, pp. 1349–1354.

[4] J. Gubbi, R. Buyya, S.Marusic, and M. Palaniswami, ―Internet of

Things (IoT): A vision, architectural elements, and future
directions,‖ Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–

1660, Sep. 2013.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue II, FEB/2018

ISSN NO : 2249-7455

http://ijamtes.org/513

[5] M. R. Palattella et al., ―Standardized protocol stack for the Internet
of (important) things,‖ IEEE Commun. Surveys Tuts., vol. 15, no. 3,

pp. 1389–1406, 3rd Quart. 2013.

[6] Hwaiyu Geng, Tara Salman, Raj Jain, ―Networking Protocols and
Standards For Internet Of Things‖, 2016

[7] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed

Aledhari, Moussa Ayyash, ―Internet of Things: A Survey on
Enabling Technologies, Protocols, and Applications‖, IEEE

Communication Surveys & Tutorials, Vol. 17, No. 4, Fourth

Quarter 2015
[8] Heng Wang, Daijin Xiong, Ping Wang, And Yuqiang Liu, ―A

Lightweight XMPP Publish/Subscribe Scheme for Resource-

Constrained IoT Devices‖ IEEE ACCESS, 2017
[9] N. N. Naik, ―Choice of Effective Messaging Protocols for IoT

Systems: MQTT, CoAP, AMQP and HTTP‖, in IEEE International

Systems Engineering Symposium (ISSE), 2017
[10] Tetsuya Yokotani, Yuya Sasaki,"Comparison with HTTP and

MQTT on Required Network Resources for IoT",International

Conference on Control, Electronics, Renewable Energy and

Communications (ICCEREC), 2016

[11] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J.

Alonso-Zarate, ―A survey on application layer protocols for the
internet of things,‖ Transaction on IoT and Cloud Computing, vol.

3, no. 1, pp. 11–17, 2015.

[12] R. S. Cohn, ―A comparison of AMQP and MQTT,‖ 2011.

[13] T. Jaffey. (2014, February) MQTT and CoAP, IoT
protocols.[Online].Available:

https://eclipse.org/community/eclipse_newsletter/2014/february/arti

cle2.php
[14] Naik, P. Jenkins, P. Davies, and D. Newell, ―Native web

communication protocols and their effects on the performance of

web services and systems,‖ in 16th IEEE International Conference
on Computer and Information Technology (CIT). IEEE, 2016, pp.

219–225.

[15] N. N. Naik and P. Jenkins, ―Web protocols and challenges of web
latency in the web of things,‖ in 2016 Eighth International

Conference on Ubiquitous and Future Networks (ICUFN). IEEE,

2016, pp. 845–850.
[16] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, ―Future Internet: The

Internet of Things architectre, possible applications and key

challenges,‖ in Proc. 10th Int. Conf. FIT, 2012, pp. 257–260.
[17] T. Berners-Lee, R. Fielding, H. Frystyk, ―Hypertext Transfer

Protocol HTTP/1.0‖, IETF RFC 1945, 1996

[18] IBM, ―MQTT V3.1 Protocol Specification‖, 2012,

http://public.dhe.ibm.com/software/dw/webservices/ws-

mqtt/mqttv3r1.html

[19] T. Fujita, Y. Goto, A. Koike, “M2M architecture trends and

technical issues”, The Journal of IEICE, Vol.96, pp.305 － 312,

2013

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue II, FEB/2018

ISSN NO : 2249-7455

http://ijamtes.org/514

https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqttv3r1.html
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqttv3r1.html

