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Abstract 

This paper presents output voltage estimation of RC low pass filter (LPF). For this, extended 

Kalman filter (EKF) has been used on stochastic model of RC LPF. At first, deterministic model of 

RC low pass circuit has been derived and it is transformed into stochastic model by adding white 

Gaussian noise to input source and circuit elements. Thereafter, EKF is applied for output voltage 

estimation. MATLAB simulation results show that estimated output of RC circuit using noisy 

input gives approximately same output as PSPICE simulated output (actual output). 
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1. INTRODUCTION 

 

RC circuit is an important circuit component in different electronic circuits. Jiang [1] used 

RC low pass circuits in class D amplifier for loop stability. Farajollahiet al. [2] proposed a RC 

circuit based transmission line model for prediction of polymer based electrode and actuators 

behavior. It is also used in resistance switching interface circuit [3]. Besides these it is also used in 

CMOS bulk lowpass analogue filter [4], flexible voltage controlled oscillators [5], flyback inverter 

[6], Chebyshev ladder active RC band pass filter [7], wireless receiver [8] etc.  

Stochastic modelling is an approach for optimization problems by including uncertainty. As 

electronic circuits are affected by different types of noise, the stochastic modelling helps to study the 

effect of random fluctuations of individual circuit elements and voltage sources. Stochastic 

modelling of nonlinear rectifier circuit is given in [9]. Bonnin [10] presented the amplitude and 

phase description for nonlinear oscillator under white Gaussian noise. Tao et al. [11] proposed a 

stochastic approach to accelerate the design of lithium ion battery capacity fading dynamics model. 

Li-ion battery. Djurhuuset al. [12] analyzed the stochastic resonance of bistable electrical circuit. 

Rawat et al.[13] proposed stochastic modelling of linear RLC circuit. 

EKF is broadly used for parameter estimation of nonlinear systems in different applications. 

Stojanovic and Nedic [14] presented a EKF based joint state and parameter estimation of stochastic 

nonlinear system with time varying parameters. Chatziset al. [15] proposed stochastic parameter 

estimation of radar tracking using continuous-discrete EKF. In [16], Liu et al. studied the stochastic 

stability condition for EKF. In [17], Baccoucheet al. proposed online state of charge estimation of 

aLi-ion battery using EKF. Yin et al. [18] studied the effect of observability properties of non-

smooth systems in the convergence of EKF and Unscented Kalman Filter (UKF). 

This paper is organized as follows: Deterministic and stochastic model of RC low pass filter circuit 

has been derived in Section 2. Brief introduction to EKF is presented in section 3. Implementation   

of EKF in RC circuit stochastic model is given in Section 4. Simulation results are given in section 

5. Section 6 concludes the paper. 
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2. State Space Model of RC Circuit 
 

2. A. Deterministic Model of RC circuit 

Fig. 1 (a) shows the second order RC low pass circuit havinginput voltage source )(1 tu , resistors 

1R , 2R  and capacitors 1C  , 2C .  
1CV and 

2CV are the capacitor voltages.   
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Fig. 1.  RC low pass filter 

 
Applying Kirchhoff’s law to the circuit in Fig 1, we have 
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 Where, y is the measured output.  Above equations can be represented in following matrix 

notation as 
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Where  )(tdv  is given as 
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I. 2. B. Stochastic model of RC circuit 
White Gaussian noise has been added to input source and elements of the RC circuit to convert 
deterministic ordinary differential equation into stochastic differential equation. The correlated 
process i.e. colored noise is added to circuit elements as 

njtwkAA jjjj  1,)(  

 Where

jA  is the noisy circuit element, jA  is circuit element, jk   is the constant that denotes the 

intensity of noise, )(twj  is the zero-mean correlated process and 1u is input to the circuit. 
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The correlated process )(twj  is mathematically represented by stochastic differential equation 

(SDE) in terms of white Gaussian noise. 
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Where, )(tB j  is the Brownian motion process. )(tB j  is continuously differentiable, therefore 

equation (14) becomes 

)()(
)(

tNtw
dt

tdw
jjjjj

j
   

 
(15) 
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d
tN jj  and defined as white Gaussian noise. Substituting  (9) -  (13) into (3) 
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To convert (16) and (17) into stochastic differential equation (SDE), we multiply these equations 

by dt , therefore get 
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Combining (14), (18) and (19), we have 
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The discrete time state space matrix is obtained by using Euler-Maruyama method. Therefore, the 
discrete version of A and B are  
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The discrete state space model of above SDE becomes 
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3. EXTENDED KALMAN FILTER 
 
EKF, an extension of KF, is used for nonlinear state estimation.  
   In general, nonlinear discrete time system is defined as 

)1())1(),1(()(  kwkukXfkX  (33) 

)1())1(),1(()1(  kvkukXgkY  (34) 

where (.)f  and (.)g  are the nonlinear functions of input and previous state. )(ku  and )(kY   

are the control input and measured output respectively. )(kw   and )(kv  are the process and 

measurement noise (white Gaussian noise) with zero mean and covariance  )(kR  and )(kQ .  

Linear state space equation are obtained from (33)-(34) by applying partial derivatives of function f 

and g with respect to )(kx  and )(ku  to get Jacobian matrix. 
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    The transformed equations are 
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3. A. EKF general steps: 
Estimation through EKF algorithm broadly consists of two steps 

 Time update 
 Measurement update  

At first states )1( kX  are initiated to some value )1(ˆ 0 kX with error covariance )1(ˆ 0 kP .   

 
1. Time update: 

 
1 (a). State estimation time update: 

)1()1()1()1(ˆ)1()(ˆ   kQkukBkXkAkX  
      (37) 

Where )(ˆ kX 
is the priori and posteriori state estimate at the time 1k and k respectively. 

Superscript “–” and “+” represent priori and posteriori values that are approximated before and 
after measurement. 
 
1(b).Error covariance time update: 
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       (38) 

Where )(kP
and )1(  kP are the priori and posteriori error covariance time k  and 1k  

respectively. 
1(c).Output state prediction: 

)1()1(ˆ)1()1(ˆ   kRkXkCkY  
(39) 

2. Measurement update 
2(a).Calculation of Kalman gain: 

1
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TT
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Where kK is the Kalman gain. 

2(b).State estimate measurement update: 
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        (41) 

Where, )(ˆ kX 
is the posteriori estimated state, )(ˆ kX 

is the priori estimated state and )(kY is 

the real time measured output.  
2(c).Error covariance measurement update: 

)()]1([)( kPkCKIkP k
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In this step, posteriori error covariance, )(kP
, is estimated. These steps are repeated until we 

get best approximated output. 
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3. B. Applying EKF in RC circuit: 
For applying EKF to RC circuit equations (26) and (27) are modelled as  
 

)1()1()1()1()1()1()(  kwkBkKkzkXkAkX  (43) 

)1()1()1()1(  kvkXkCkY  (44) 

Where stochastic differential equation (26) and (27) are added with process noise )(kw  and 

measurement noise )(kv . After that, step-1 (time update) followed by step 2 (measurement 

update) from equation (37) - (42) is applied to get best estimated output.  
 
 

4. SIMULATION RESULTS 
 

Output voltage estimation of RC LPF has been done by applying EKF using stochastic 

model of the circuit. RC circuit element values are  MR 11  ,  MR 12 , uFC 11  , 

uFC 12  ,  1j  and 1j . Estimated output voltage is compared to simulated PSPICE 

data, which shows that estimated output through EKF is immune to white Gaussian noise. Fig. 2(a) 

gives comparison of EKF estimated output to simulated output when resistance 1R   is affected by 

white Gaussian noise. Similarly, Fig. 2(b), Fig. 2(c), Fig. 2(d), Fig. 2(e) gives comparison of 

simulated output and circuit elements resistance 2R , capacitance 1R , capacitance 1R , input source 

modelled by zero mean correlated process. Table I shows the SNR for different circuit elements 

modelled by different noise intensity. It shows that SNR is least when input source is affected by 

white Gaussian noise as compared to other circuit elements added with zero mean correlated 

process.    

 

Table I. Signal to Noise Ratio For Different Circuit Element Modelled By White 
Gaussian Noise 

S. No. Circuit element intensity of noise SNR (dB) 
1. 11 k  56.22 

2. 12 k  58.39 

3. 13 k  62.46 

4. 14 k  65.95 

5. 15 k  50.64 
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Fig. 2(a). RC LPF PSPICE simulated and stochastic estimated output for 11 k  and 

other k’s are zero. 

 
Fig. 2(b). RC LPF PSPICE simulated and stochastic estimated output for  12 k  

and other k’s are zero. 

 

Fig. 2(d). RC LPF PSPICE simulated and stochastic estimated output for 13 k  and 

other k’s are zero. 
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Fig. 2(e). RC LPF PSPICE simulated and stochastic estimated output for 14 k  and 

other k’s are zero. 

 

Fig. 2(c). RC LPF PSPICE simulated and stochastic estimated output for 15 k  and 

other k’s are zero. 
 

5. CONCLUSION 
 

Output voltage of RC LPF is estimated using EKF when input source and circuit elements are 
added with white Gaussian noise. MATLAB and PSPICE simulation results show that EKF work 
effectively in case of stochastic modelled RC circuit. SNR is computed for each case when either 
any of the circuit element is affected by white Gaussian noise. The advantage of the proposed 
method is that it gives good estimation as EKF is a stochastic approach of parameter estimation. 
Also, it requires small computations and easy to implement. Further, it can be used for real time 
implementation. 
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