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Abstract:  

Legendre wavelet collocation method for the numerical solution of Fredholm, Volterra, mixed 

Volterra-Fredholm integral equations, integro-differential equations and weakly singular Fredholm 

integral equations. The present scheme is based upon Legendre polynomials and Legendre wavelet 

approximations. The properties of Legendre wavelet is first presented and the resulting Legendre 

wavelet matrices are utilized to reduce the integral and integro-differential equations into system of 

algebraic equations, then the required Legendre coefficients are computed using Matlab. Some of the 

numerical examples are tested and compared with exact and existing methods. Error analysis is 

worked out, which shows efficiency of the proposed method.  

Keywords: Legendre wavelet, Collocation method, Integral equations, Integro-differential equations. 

 

1. INTRODUCTION 

Integral and integro-differential equation has several applications in various fields of science and 

engineering. There are different numerical methods for approximating the solution of integral and 

integro-differential equations are known [1]. Wavelets theory is a moderately new and an emerging 

tool in applied mathematical research area. It has been applied in a wide range of engineering 

disciplines; particularly, signal analysis for waveform representation and segmentations, time-

frequency analysis and fast algorithms for easy implementation. Wavelets allow the precise 

representation of a variety of functions and operators. Moreover, wavelets establish a connection with 

fast numerical algorithms [2, 3]. Since 1991 the various types of wavelet method have been applied 

for the numerical solution of different kinds of integral equations, a detailed survey on these papers 

can be found in [4]. For solving these equations, such as Lepik et al. [5-11] applied the Haar wavelet 

method. Maleknejad et al. [12-16] has introduced rationalized haar wavelet, Legendre wavelet, 

Hermite Cubic spline wavelet, and Coifman wavelet. Babolian and Fattahzadeh [17] have applied 

chebyshev wavelet operational matrix of integration. Abdalrehman [18] has proposed an algorithm for 

nth order integro-differential equations by using Hermite Wavelets Functions. Yousefi and Banifatemi 

[19] has proposed a recently CAS wavelet. Ramane et al. [27] have applied a new Hosoya polynomial 

of path graphs for the numerical solution of Fredholm integral equations. In this paper, we proposed 

the Legendre wavelet (LW) collocation method for the numerical solution of integral and integro-
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differential equation. The proposed method is explained and demonstrated the efficiency of the 

scheme than the existing method by presenting some of the illustrative examples. 

 

2. Properties of Legendre wavelets 

 

2.1 Wavelets  

In recent years, wavelets have found their way into many different fields of science and 

engineering. Wavelets constitute a family of single functions constructed from dilation and translation 

of a single function called the mother wavelet. When the dilation parameter a and the translation 

parameter b vary continuously, we have the following family of continuous wavelets [20, 21]. 

1
2

, ( ) , , , 0a b

t b
t a a b R a

a
 

  
   

   

2.2 Legendre wavelets 

Legendre wavelet
 ,

ˆ( ) ( , , , )n mL t L k n m t have four arguments; ˆ2,3,..., 2 1,k n n    

11,2,3,..., 2 ,kn m  is the order of the Legendre polynomials and t  is the normalized time. They are 

defined on the interval [0,1) by: 
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     (2.1) 

Here, ( )ml t are the well-known Legendre polynomial of order ,m which are orthogonal with respect to 

the weight function ( ) 1w t  and satisfy the following recursive formula: 
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The set of Legendre wavelets are an orthonormal set (Razzaghi (2000, 2001)). 

The six basis functions are given by: 
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For k = 2 implies n = 1, 2 and M = 3 implies m = 0, 1, 2 then using collocation points  

0.5
, 1,2, ,j

j
j Nt

N


   , Eq.(2.1) gives the Legendre wavelet matrix of order 

1( 2 )kN M  6x6 

as,  

6 6

1.4142    1.4142    1.4142         0            0              0

-1.6330       0        1.6330          0            0              0

0.5270    -1.5811   0.5270         0            0              
L  

0

     0            0             0         1.4142    1.4142     1.4142

     0            0             0        -1.6330         0         1.6330

     0            0             0         0.5270    -1.5811    0.5270

 
 
 
 
 
 
 
 
   

 

 

3. Legendre Wavelet Collocation Method of Solution 

 

In this section, we present a Legendre wavelet (LW) collocation method for solving integral and 

integro-differential equation, 

3.1 Integral Equations 

Fredholm Integral equations: 

Consider the Fredholm integral equations, 

1

1

0

( ) ( ) ( , ) ( ) ,u t f t k t s u s ds       (3.1) 

where 2 2
1( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t , and 1 ( , )k t s by using the collocation points it  as given in the above 

section 2.2. Then the numerical procedure as follows:  
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STEP 1: Let us first approximate ( ) ( ),Tf t X t� and ( ) ( ),Tu t Y t�              (3.2) 

Let the function 2( ) [0,1]f t L may be expanded as: 

, ,
1 0

( ) ( ),n m n m
n m

f t x L t
 

 

     (3.3) 

where 

                     , ,( ( ), ( )).n m n mx f t L t         (3.4) 

In (3.4), (. , .) denotes the inner product. 

If the infinite series in (3.3) is truncated, then (3.3) can be rewritten as: 

12 1

, ,
1 0

( ) ( ) ( ),

k M
T

n m n m
n m

f t x L t X t

 

 

        (3.5) 

where X and ( )t are 1N  matrices given by: 
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and 
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   (3.7) 

STEP 2: Next, approximate the kernel function as: 2
1 ( , ) ([0,1] [0,1])k t s L   

     1 1( , ) ( ) ( ),Tk t s t K s �          (3.8) 

where 1K  is 1 12 2k kM M  matrix, with  

         1 1[ ] ( ( ), ( ( , ), ( ))).ij i jK L t k t s L s
 

i.e.,    
1 1

1 1( ) ( , ) ( )TK t k t s s
 

     �          (3.9) 

STEP 3: Substituting Eq. (3.2) and Eq. (3.8) in Eq. (3.1), we have: 

 

1

1
0

1

1 0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 
Then we get a system of equations as, 

1( ) .I K Y X         (3.10) 

By solving this system obtain the Legendre wavelet coefficients ‘Y’ and substituting in step 4.  

STEP 4: ( ) ( )Tu t Y t�  

This is the required approximate solution of Eq. (3.1). 
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Volterra Integral equations: 

Consider the Volterra integral equations with convolution but non-symmetrical kernel 

2

0

( ) ( ) ( , ) ( ) , [0,1]
t

u t f t k t s u s ds t        (3.11) 

where 2 2
2( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( )u t is an unknown function.  

Let us approximate ( )f t , ( )u t , and 2 ( , )k t s by using the collocation points it  as given in the above 

section 2.2. Then the numerical procedure as follows:  

STEP 1: This can be rewritten in Fredholm integral equations, with a modified kernel 2( , )k t s  and 

solved in Fredholm form [22] as, 

2

0

( ) ( ) ( , ) ( ) ,
t

u t f t k t s u s ds        (3.12) 

where, 
2

2

( , ), 0
( , )

0, 1.

k t s s t
k t s

t s

 


 



 

STEP 2:  Let us first approximate ( )f t and ( )u t  as given in Eq. (3.2), 

STEP 3:  Next, we approximate the kernel function as: 
2

2( , ) ([0,1] [0,1])k t s L   

         2 2( , ) ( ) ( ),Tk t s t K s   �
            (3.13) 

where 2K  is 
1 12 2k kM M  matrix, with  

2 2( ) ( ( ),( ( , ), ( ))).ij i jK L t k t s L s 
 

i.e.,  
1 1

2 2( ) ( , ) ( )TK t k t s s
 
        
�

       (3.14) 

STEP 4: Substituting Eq. (3.2) and Eq. (3.13) in Eq. (3.12), we have: 

 

1

20

1

2 0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y

      

     

   





 
Then we get a system of equations as, 

2( ) .I K Y X         (3.15)

 

By solving this system obtain the Legendre wavelet coefficients ‘Y’ and substituting in step 5.  

STEP 5: ( ) ( )Tu t Y t�  

This is the required approximate solution of Eq. (3.11). 
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Fredholm-Volterra integral equations: 

Consider the Fredholm-Volterra integral equation of the second kind, 

1

1 2

0 0

( ) ( ) ( , ) ( ) ( , ) ( ) ,
x

u t f t k t s u s ds k t s u s ds                       (3.16) 

where 2 2
1 2( ) [0,1), ( , ) and ( , ) ([0,1) [0,1))f t L k t s k t s L    are known function and ( )u t is an 

unknown function.  

Let us approximate ( )f t , ( )u t , 1 2( , ) and ( , )k t s k t s by using the collocation points as follows:   

STEP 1:  Let us first approximate ( )f t and ( )u t  as given in Eq. (3.2), 

STEP 2: Substituting Eq. (3.2), Eq. (3.9) and Eq. (3.14) in Eq. (3.16), we get a system of N equations 

with N unknowns, 

i.e., 
1 2( ) .I K K Y X        (3.17) 

where, I is an identity matrix. 

By solving this system we obtain the Legendre wavelet coefficient ‘Y’ and substituting this ‘Y’ in step 

3. 

STEP 3: ( ) ( )Tu t Y t�                     

This is the required approximate solution of Eq. (3.16). 

Weakly singular Fredholm integral equations: 

Consider the Weakly singular Fredholm integral equation, 

1

0

( )
( ) ( ) , 0 1

1

u s
u t f t ds t s

t
   

        (3.18) 

To solve Eq. (3.18), the procedure as follows: 

STEP 1: We first approximate u(t) as truncated series defined in Eq. (3.5). That is, 

 ( ) ( )Tu t Y t            (3.19) 

where  Y and ( )t are defined similarly to Eqs. (3.6) and (3.7).  

STEP 2: Then substituting Eq. (3.19) in Eq. (3.18), we get, 

1

0

( )
( ) ( )

1

T
T Y s

Y t f t ds
t


  

      (3.20) 

STEP 3: Substituting the collocation point it  in Eq. (3.20). We obtain,  

1

0

( )
( ) ( )

1

T
T

i i

i

Y s
Y t f t ds

t


  


                  (3.21) 

1

0

( )
( ( ) ) , where

1

T
T

i

i

Y s
Y t G f G ds

t


   


  

STEP 4: Now, we get the system of algebraic equations with unknown coefficients.  
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, where ( ( ) )T
iY K f K x G     

Solving the above system of equations, we get the Legendre wavelet coefficients ‘Y’ and then 

substituting these coefficients in Eq. (3.19), we obtain the required approximate solution of Eq. (3.18). 

3.2 Integro-differential Equations 

Fredholm Integro-differential equations: 

In this section, we concerned about a technique that will reduce Fredholm integro-differential 

equation to an equivalent Fredholm integral equation. This can be easily done by integrating both 

sides of the integro-differential equation as many times as the order of the derivative involved in the 

equation from 0 to t for every time we integrate, and using the given initial conditions. It is worth 

noting that this method is applicable only if the Fredholm integro-differential equation involves the 

unknown function u(t) only, and not any of its derivatives, under the integral sign [1].   

Consider the Fredholm integro-differential equation, 

1
( ) ( )

1

0

( ) ( ) ( , ) ( ) , ,n l
lu t f t k t s u s ds u b      (3.22) 

where 2 2
1( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( ) ( )nu t is an unknown function.  

where ( ) ( )nu t  is the nth derivative of ( )u t  with respect to t and 
lb  are constants that define the 

initial conditions. 

Let us first, we convert the Fredholm integro-differential equation into Fredholm integral equation, 

then we reduce it into a system of algebraic equations as given in Eq. (3.10), using this system we 

solve the Eq. (3.22). Then we obtain the approximate solution of equation.  

Volterra Integro-differential equations: 

In this section, we concerned with converting to Volterra integral equations. We can easily convert the 

Volterra integro-differential equation to equivalent Volterra integral equation, provided the kernel is a 

difference kernel defined by k(t, s) = k(t − s). This can be easily done by integrating both sides of the 

equation and using the initial conditions. To perform the conversion to a regular Volterra integral 

equation, we should use the well-known formula, which converts multiple integrals into a single 

integral [1].  

i.e., 

1

0 0 0 0

1
........ ( ) ( ) ( )

( 1)!

t t t t
n nu t dt t s u s ds

n
 

     

Consider the Volterra integro-differential equations, 

( ) ( )
2

0

( ) ( ) ( , ) ( ) , ,
t

n l
lu t f t k t s u s ds u b      (3.22) 

where 2 2
2( ) [0,1), ( , ) ([0,1) [0,1))f t L k t s L    and ( ) ( )nu t is an unknown function.  
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where ( ) ( )nu t  is the nth derivative of ( )u t  with respect to t and 
lb  are constants that define the 

initial conditions. 

Let us first, we convert the Volterra integro-differential equation into Volterra integral equation, then 

we reduce it into a system of algebraic equations as given in Eq. (3.15), using this system we solve the 

Eq. (3.22). Then we obtain the approximate solution of equation.  

4. Convergence Analysis 

Theorem: The series solution , ,1 0
( ) ( )p q p qp q

u t x L t
 

 
   defined in Eq. (3.5) using Legendre 

wavelet method converges to ( )u t as given in [23]. 

Proof: Let 
2 ( )L R be the Hilbert space and ,p qL  defined in Eq. (3.2) forms an orthonormal basis. 

Let 
1

, ,0
( ) ( )

M

p i p ii
u t x L t




 where , ,( ), ( )p i p ix u t L t for a fixed .p  

Let us denote 
, ( ) ( )p iL t L t and let ( ), ( ) .j u t L t   

Now we define the sequence of partial sums 
pS of ( ( ));j jL t Let 

pS  and 
qS be the partial sums with 

.p q  We have to prove 
pS  is a Cauchy sequence in Hilbert space. 

Let 
1

( ).
p

p j ji
S L t


  

Now 
2

1 1

( ), ( ), ( ) .
p p

p j j j
i j

u t S u t L t 
 

    

We claim that 
2 2

1

, .
p

p q j
j q

S S p q
 

    

Now 

2
2

1 1 1 1

( ) ( ), ( ) , .
p p p p

j j j j j j j
j q j q j q j q

L t L t L t for p q   
       

       

Therefore,    

2
2

1 1

( ) , .
p p

j j j
j q j

L t for p q 
  

    

From Bessel’s inequality, we have 
2

1

p

jj


 is convergent and hence 

2

1

( ) 0 ,
p

j j
j q

L t as q p
 

   

So, 
1

( ) 0
p

j j
j q

L t
 

  and { }pS  is a Cauchy sequence and it converges to s (say). 

We assert that ( ) ,u t s  
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Now ( ), ( ) , ( ) ( ), ( ) lim , ( )j j j p j j j j
p

s u t L t s L t u t L t S L t   


      
,
 

This implies, 

( ), ( ) 0js u t L t   

Hence ( )u t s  and 
1

( ).
p

j ji
L t

  converges to ( )u t  as p  and proved. 

 

 

5. Numerical experiments 

 

In this section, we present Legendre wavelet (LW) collocation method for the numerical solution of 

integral and integro-differential equation in comparison with existing method to demonstrate the 

capability of the proposed method and error analysis are shown in tables and figures. Error function is 

presented to verify the accuracy and efficiency of the following numerical results:  

 
2

max
1

( ) ( ) ( ) ( )
n

e i a i e i a i
i

E Error function u t u t u t u t




    
 

where eu and au are the exact and approximate solution respectively. 

Example 5.1 Let us consider the Fredholm integral equation of the second kind [4].  

1
2

0
( ) ( ) ( )u t t t s u s ds       (5.1) 

which has the exact solution 
2( ) 5 17 / 6u t t t   . Where 

2( )f t t  and kernel 1( , )k t s t s  . 

Firstly, we approximate ( ) ( ),Tf t X t� and ( ) ( ),Tu t Y t�   

Next, approximate the kernel function as: 2
1 ( , ) ([0,1] [0,1])k t s L   

  1 1( , ) ( ) ( ),Tk t s t K s �          

where 1K  is 1 12 2k kM M  matrix, with 
1 1[ ] ( ( ), ( ( , ), ( ))).ij i jK H t k t s H s

 

   
1 1

1 1( ) ( , ) ( )TK t k t s s
 

     �
 

 Next, substituting the function ( )f t , ( )u t , and 1 ( , )k t s in Eq. (5.1), then using the collocation 

points, we get the system of algebraic equations with unknown coefficients for k = 2 and M = 4 (N = 

8), as an order 8 8  as follows: 

 

1

10

1

1 0

1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y
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1( ) ,I K Y X    where,
1

0
( ) ( )TI s s ds    is the identity matrix. 

where, X = [0.0589    0.0510    0.0132         0    0.4125    0.1531    0.0132         0],  

1

    0.2500    0.0722    0.0000         0    0.5000    0.0722    0.0000    0.0000

    0.0722    0.0000    0.0000   -0.0000    0.0722    0.0000         0    0.0000

    0.0000    0.0000   -0.0000    0.0

K 

000    0.0000    0.0000   -0.0000   -0.0000

    0.0000   -0.0000   -0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000

    0.5000    0.0722    0.0000    0.0000    0.7500    0.0722    0.0000    0.0000

    0.0722    0.0000         0    0.0000    0.0722    0.0000    0.0000   -0.0000

    0.0000    0.0000   -0.0000   -0.0000    0.0000    0.0000    0.0000   -0.0000

    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0000    0.0000   -0.0000

 
 
 
 
 
 
 
 
 
 
 
  

 

By solving this system of equations, we obtain the Legendre wavelet coefficients, 

Y = [-2.8284   -0.4593    0.0132   -0.0000   -4.2426   -0.3572    0.0132   -0.0000]  

and substituting these coefficients in ( ) ( ),Tu t Y t   we get the approximate solution ( )u t are 

shown in table 1. Maximum Error analysis is shown in table 2 and compared with existing method 

(Haar wavelet).  

Table 1: Numerical results of the example 5.1. 

t Exact 
Legendre 
Wavelet 

0.0625 -3.1419 -3.1419 

0.1875 -3.7357 -3.7357 

0.3125 -4.2982 -4.2982 

0.4375 -4.8294 -4.8294 

0.5625 -5.3294 -5.3294 

0.6875 -5.7982 -5.7982 

0.8125 -6.2357 -6.2357 

0.9375 -6.6419 -6.6419 
 

Table 2: Maximum Error analysis ( maxE ) of the example 5.1. 

N 
Method  

(Lepik and Tamme (2005b)) 
LW  

8 7.0e-02 2.7e-14 

16 1.7e-02 1.1e-14 

32 4.3e-03 1.5e-14 

64 1.3e-03 2.1e-14 

Example 5.2 Next, consider the Fredholm integral equation,   

                                                      
1

2 (1/3) 2 (5/3)

0

1
( ) ( )

3
t t su t e e u s ds  

   
 


         

(5.2) 

with exact solution
2( ) tu t e . Applying the present method and solved the Eq. (5.2), numerical 

results are presented in table 3 and figure 1 in comparison with existing method [24]. 
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Fig. 1: Comparison of LW, BPF and TF with exact solutions. 

Table 3: Numerical results is obtained for M = 8 and k = 3 of the example 5.2. 

t Exact BPF TF LW 

0 1  1.301832 0.999844 1.000005 
0.1 1.221403 1.244627 1.221598 1.221410 

0.2 1.491825 1.501307 1.492294 1.497834 

0.3 1.822119 1.810922 1.822684 1.822130 

0.4 2.225541 2.184388 2.225880 2.225554 

0.5 2.718282 2.804810 2.717857 2.718298 

0.6 3.320117 3.383247 3.320648 3.320137 

0.7 4.055200 4.080975 4.056474 4.055224 

0.8 4.953032 4.922595 4.954570 4.953062 

0.9 6.049647 5.937783 6.050568 6.049683 

1 7.389056 7.162334 7.387901 7.389100 

Example 5.3 Next, consider [15], 

1

0
( ) sin(2 ) cos( ) ( )u t t t u s ds   .   (5.3) 

which has the exact solution of the form ( ) sin(2 )u t t . Solving Eq. (5.3) using the present method, 

we get the approximate solution of ( )u t  with the help of Legendre wavelet coefficients. Error 

analysis is compared with existing method are shown in table 4. 

Example 5.4 Next, consider [15],
  

1
2 2

0
( ) sin(2 ) ( ) ( )u t t t t s s u s ds                (5.4) 

which has the exact solution of the form ( ) sin(2 )u t t . Solving Eq. (5.4) using the present method, 

we get the approximate solution of ( )u t  with the help of Legendre wavelet coefficients. Error 

analysis is compared with existing method are shown in table 4. 
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Example 5.5 Next, consider [15],
  

1
3 2 2 2

0
( ) 2 3 ( ) ( )u t t t t t t s s u s ds          (5.5) 

which has the exact solution of the form 
3 2( ) 2 3u t t t t    . Solving Eq. (5.5) using the present 

method, we get the approximate solution of ( )u t  with the help of Legendre wavelet coefficients. 

Error analysis is compared with existing method are shown in table 4. 

 

Table 4: Comparison of the Error analysis. 

N 
Example 5.3 Example 5.4 Example 5.5 

Method [15] ( W)MaxE L
 

Method [15] ( W)MaxE L  Method [15] ( W)MaxE L  

4 2.84e-02 3.33e-16 2.84e-02 2.22e-16 1.33e-10 0 

8 2.38e-03 1.60e-15 2.38e-03 5.55e-16 3.79e-10 4.85e-17 
16 2.09e-04 1.22e-15 2.10e-04 8.88e-16 3.26e-10 1.80e-16 
32 1.20e-04 1.54e-15 2.00e-04 1.66e-15 4.83e-10 1.38e-16 
 

Example 5.6 Let us consider the Volterra integral equation of the second kind [22],  

0

( ) cos( ) ( ) cos( ) ( ) , 0 1
t

u t t t s t s u s ds t        (5.6) 

which has the exact solution 
1

( ) (2cos 3 1)
3

u t t  . Where ( ) cos( )f t t  and kernel 

2 ( , ) ( )cos( )k t s t s t s    . 

Firstly, we approximate ( ) ( ),Tf t X t� and ( ) ( ),Tu t Y t�   

Next, approximate the kernel function as: 2
2 ( , ) ([0,1] [0,1])k t s L   

  2 2( , ) ( ) ( ),Tk t s t K s �          

where 2K  is 1 12 2k kM M  matrix, with 
2 2[ ] ( ( ), ( ( , ), ( ))).ij i jK H t k t s H s

 

   
1 1

2 2( ) ( , ) ( )TK t k t s s
 

     �
 

 Next, substituting the ( )f t , ( )u t , and 2 ( , )k t s in Eq. (5.6) using the collocation points, we get the 

system of algebraic equations with unknown coefficients for k = 2 and M = 4 (N = 8), as an order 

8 8  as follows: 

 

1

20

1

2 0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ),

T T T T

T T T T

T T

t Y t X t K s s Yds

t Y t X t K s s ds Y

t Y t X K Y
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2( ) ,I K Y X    where,
1

0
( ) ( )TI s s ds    is the identity matrix. 

where,  X = [0.6780   -0.0251   -0.0064    0.0001    0.5120   -0.0691   -0.0048    0.0002],  

2

   -0.0388    0.0343   -0.0076   -0.0003         0         0         0         0

   -0.0343    0.0261    0.0010    0.0020         0         0         0         0

   -0.0076   -0.0010    0.0115    0.0

K 

000         0         0         0         0

    0.0003    0.0020   -0.0000    0.0154         0         0         0         0

   -0.2050    0.0432    0.0064   -0.0005   -0.0388    0.0343   -0.0076   -0.0003

   -0.0432   -0.0143    0.0016    0.0001   -0.0343    0.0261    0.0010    0.0020

    0.0064   -0.0016   -0.0001    0.0000   -0.0076   -0.0010    0.0115    0.0000

    0.0005    0.0001   -0.0000   -0.0000    0.0003    0.0020   -0.0000    0.0154

 
 
 
 
 
 
 
 
 
 
 
  

 

By solving this system of equations, we obtain the Legendre wavelet coefficients ‘Y’ 

Y = [0.6512   -0.0487   -0.0114    0.0002    0.3586   -0.1118   -0.0032    0.0004] and substituting these 

coefficients in ( ) ( ),Tu t Y t   we get the approximate solution ( )u t as shown in table 5. 

Maximum error analysis is compared with Hermite wavelet is shown in table 6. 

Table 5: Numerical results of the example 5.6. 

t Exact Legendre Wavelet 
0.0625 0.9961 0.9980 

0.1875 0.9652 0.9655 

0.3125 0.9047 0.9055 

0.4375 0.8176 0.8190 

0.5625 0.7078 0.7091 

0.6875 0.5806 0.5802 

0.8125 0.4419 0.4424 

0.9375 0.2980 0.2981 

 

Table 6: Comparison of maximum error analysis maxE of the example 5.6. 

N HW LW  

8 1.52e-02 1.94e-03 

16 4.00e-03 4.88e-04 

32 1.00e-03 1.22e-04 

64 2.49e-04 3.05e-05 

128 6.23e-05 7.62e-06 

Example 5.7 Next, consider the Fredholm integro-differential equation [1],  

1
2

0

'( ) 36 ( ) , (0) 1, 0 1u t t u s ds u t        (5.7) 

which has the exact solution 
3( ) 1 8 12 .u t t t     

Firstly, integrating Eq. (5.7) w.r.t  t, we get the Fredholm integral equation, 
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1
3

0

( ) 1 12 ( ) ,u t t t u s ds         (5.8) 

Solving Eq. (5.8) applying the present method, we obtain the approximate solution of ( )u t  with the 

help of Legendre wavelet coefficients. Maximum error analysis is shown in table 7 compared with 

Hermite wavelet. 

Table 7: Maximum error analysis of the example 5.7. 

N HW
 

LW  

8 3.51e-01 1.06e-14 

16 9.08e-02 3.55e-15 

32 2.30e-02 1.06e-14 

64 5.81e-03 3.55e-15 

128 1.45e-03 2.13e-14 

Example 5.8 Next, consider the Volterra integro-differential equation [25],  

0

'( ) 1 2 sin ( ) , (0) 0, 0 1
t

u t t t u s ds u t         (5.9) 

which has the exact solution ( ) cos .u t t t  

Firstly, integrating Eq. (5.9) w.r.t  t, we get Volterra integral equation, 

0

( ) 2(sin cos ) ( ) ( ) ,
t

u t t t t t t s u s ds             (5.10) 

Solving Eq. (5.10) using the present method, we get the approximate solution of ( )u t  with the help of 

Legendre wavelet coefficients. Maximum error analysis is shown in table 8 compared with Hermite 

wavelet. 

Table 8: Maximum error analysis of the example 5.8. 

N HW
 

LW  

8 1.37e-02 1.21e-03 

16 3.49e-03 3.10e-04 

32 8.81e-04 7.82e-05 

64 2.20e-04 1.96e-05 

128 5.51e-05 4.92e-06 

 

Example 5.9 Next, consider the Volterra-Fredholm integral equation [1],  

1

0 0

( ) exp( ) 1 ( ) ( ) exp( ) ( ) , 0 1
t

u t t t t s u s ds t s u s ds t             (5.11) 
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which has the exact solution ( ) exp( ).u t t Where ( ) exp( ) 1f t t t    and the kernels 

1( , ) exp( )k t s t s   and 2( , ) ( )k t s t s  . 

Let us approximate ( )f t , ( )u t , 1 2( , ) and ( , )k t s k t s as given in Eq. (3.5), Eq. (3.9) and Eq. (3.14) 

using the collocation points, we get an system of N equations with N unknowns  

i.e., 
1 2( ) .I K K Y X     where, I is an identity matrix, 

we find, X = [1.8013    0.2339    0.0085    0.0004    2.7500    0.3195    0.0140    0.0006], 

1

   -0.5105    0.0734   -0.0047    0.0002   -0.3096    0.0445   -0.0029    0.0001

   -0.0734    0.0105   -0.0007    0.0000   -0.0445    0.0064   -0.0004    0.0000

   -0.0047    0.0007   -0.0000    0.0

K 

000   -0.0029    0.0004   -0.0000    0.0000

   -0.0002    0.0000   -0.0000    0.0000   -0.0001    0.0000   -0.0000    0.0000

   -0.8417    0.1210   -0.0078    0.0003   -0.5105    0.0734   -0.0047    0.0002

   -0.1210    0.0174   -0.0011    0.0000   -0.0734    0.0105   -0.0007    0.0000

   -0.0078    0.0011   -0.0001    0.0000   -0.0047    0.0007   -0.0000    0.0000

   -0.0003    0.0000   -0.0000    0.0000   -0.0002    0.0000   -0.0000    0.0000

 
 
 
 
 
 
 
 
 
 
 
    

2

    0.0403   -0.0361    0.0085    0.0000         0         0         0         0

    0.0361   -0.0281    0.0000   -0.0022         0         0         0         0

    0.0085   -0.0000   -0.0111    0.0

K 

000         0         0         0         0

    0.0000   -0.0022   -0.0000   -0.0152         0         0         0         0

    0.2500   -0.0722    0.0000    0.0000    0.0403   -0.0361    0.0085    0.0000

    0.0722    0.0000    0.0000    0.0000    0.0361   -0.0281    0.0000   -0.0022

    0.0000   -0.0000   -0.0000   -0.0000    0.0085   -0.0000   -0.0111    0.0000

    0.0000    0.0000   -0.0000    0.0000    0.0000   -0.0022   -0.0000   -0.0152

 
 
 
 
 
 
 
 
 
 
 
  

 

By solving this system we obtain the Legendre wavelet coefficient, 

Y = [0.9168    0.1315    0.0077   -0.0003    1.5114    0.2168    0.0128   -0.0005], 

Then, substituting these coefficients in ( ) ( ),Tu t Y t�  we get the approximate solution of Eq. 

(5.11) are shown in table 9. Maximum error analysis is shown in table 10 compared with Hermite 

wavelet. 
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Table 9: Numerical results of the example 5.9. 

t Exact Legendre Wavelet 

0.0625 1.0645 1.0632 

0.1875 1.2062 1.2057 

0.3125 1.3668 1.3675 

0.4375 1.5488 1.5467 

0.5625 1.7551 1.7529 

0.6875 1.9887 1.9877 

0.8125 2.2535 2.2544 

0.9375 2.5536 2.5498 
 

Table 10: Maximum error analysis of the example 5.9. 

N HW
 

LW  
4 1.30e-02 6.12e-03 
8 2.18e-02 3.77e-03 

16 5.76e-03 9.56e-04 
32 1.48e-03 2.40e-04 
64 3.77e-04 6.02e-05 

 

Example 5.10 Let us consider the weakly singular Fredholm integral equation of the second kind,  

1
2

0

16 ( )
( ) , 0 1.

15 1

u s
u t t ds t

t
    

    (5.12) 

which has the exact solution 
2( )u t t . Applying the Legendre Wavelet Collocation Method, we 

solved the Eq. (5.12) with k = 1 and M  = 3, then we obtain,  

[ - 1 . 0 3 8 9    - 0 . 8 1 6 7    - 0 . 3 7 2 2 ]

- 1 . 0 0 0 0    - 1 . 0 0 0 0    - 1 . 0 0 0 0

- 2 . 3 0 9 4    - 1 . 1 5 4 7     0 . 0 0 0 0

- 0 . 5 2 1 7    - 2 . 0 1 2 5    - 0 . 5 2 1 7

f

K



 
   
  

 

Next, we get the Legendre wavelet coefficients,   

 0.3333    0.2887    0.0745Y   

next, substituting these coefficients in Eq. (3.19), we get the accurate solution of Eq. (5.12) with exact 

solution 
2( )u t t and the maximum error is 1.11e-016 compared to  the existing method (Behzadi 

(2014)) has the maximum error for n = 256 is 5.02e-06. This shows the efficiency of the proposed 

method. 

Example 5.11 Next, consider [26],  

1

0

( )
( ) , 0 1.

2 1

u s
u t t ds t

t


    

   (5.13) 
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which has the exact solution ( )u t t . We solved the Eq. (5.13) by approaching the present method 

for k = 1 and M = 5, we get the approximate solution as shown in table 5.11 and the maximum error is 

2.98e-04.  

Table 5.11 Numerical result of the example 5.11.

 

t Exact solution 
Legendre wavelet  

(k = 1, M = 5) 
Absolute Error 

0.1 0.3162 0.3159 2.98e-04 

0.2 0.4472 0.4445 2.70e-03 

0.3 0.5477 0.5474 2.98e-04 

0.4 0.6325 0.6328 3.29e-04 

0.5 0.7071 0.7068 2.98e-04 

0.6 0.7746 0.7738 7.54e-04 

0.7 0.8367 0.8364 2.98e-04 

0.8 0.8944 0.8950 5.39e-04 

0.9 0.9487 0.9484 2.98e-04 

 

Example 5.12 Lastly, consider [26],  

1

0

( )
( ) exp( ) 4.0602 , 0 1.

1

u s
u t t ds t

t
    

    (5.14) 

which has the exact solution ( ) exp( )u t t . Applying the proposed method to solve Eq. (5.14) for k 

= 1 and M = 8. We obtain the approximate solution u(t) as shown in table 12 and the maximum error 

is 4.30e-05 as shown in figure 2. 

 

Table 12: Numerical result of the example 5.12.

 
t Exact solution 

Present method 

(k = 1, M = 8) 

0.1 1.105170 1.105213 

0.2 1.221402 1.221445 

0.3 1.349858 1.349901 

0.4 1.491824 1.491867 

0.5 1.648721 1.648764 

0.6 1.822118 1.822161 

0.7 2.013752 2.013795 

0.8 2.225540 2.225583 

0.9 2.459603 2.459646 
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Fig. 2: Error analysis of the example 5.12. 

 

6. CONCLUSION 

 

In this paper, we proposed the Legendre wavelet collocation method for solving the integral and 

integro-differential equations. The proposed scheme reduces an integral equation into a set of 

algebraic equations. The numerical result shows that the accuracy improves with increasing the level 

of resolution N, for better accuracy, the larger N is recommended. Error analysis is presented in 

comparison with the existing methods as shown in tables and figures. Hence the present scheme 

shows the efficiency of the Legendre wavelet collocation method.  
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