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Abstract:

Legendre wavelet collocation method for the numerical solution of Fredholm, Volterra, mixed
Volterra-Fredholm integral equations, integro-differential equations and weakly singular Fredholm
integral equations. The present scheme is based upon Legendre polynomials and Legendre wavelet
approximations. The properties of Legendre wavelet is first presented and the resulting Legendre
wavelet matrices are utilized to reduce the integral and integro-differential equations into system of
algebraic equations, then the required Legendre coefficients are computed using Matlab. Some of the
numerical examples are tested and compared with exact and existing methods. Error analysis is
worked out, which shows efficiency of the proposed method.
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1. INTRODUCTION

Integral and integro-differential equation has several applications in various fields of science and
engineering. There are different numerical methods for approximating the solution of integral and
integro-differential equations are known [1]. Wavelets theory is a moderately new and an emerging
tool in applied mathematical research area. It has been applied in a wide range of engineering
disciplines; particularly, signal analysis for waveform representation and segmentations, time-
frequency analysis and fast algorithms for easy implementation. Wavelets allow the precise
representation of a variety of functions and operators. Moreover, wavelets establish a connection with
fast numerical algorithms [2, 3]. Since 1991 the various types of wavelet method have been applied
for the numerical solution of different kinds of integral equations, a detailed survey on these papers
can be found in [4]. For solving these equations, such as Lepik et al. [5-11] applied the Haar wavelet
method. Maleknejad et al. [12-16] has introduced rationalized haar wavelet, Legendre wavelet,
Hermite Cubic spline wavelet, and Coifman wavelet. Babolian and Fattahzadeh [17] have applied
chebyshev wavelet operational matrix of integration. Abdalrehman [18] has proposed an algorithm for
n™ order integro-differential equations by using Hermite Wavelets Functions. Yousefi and Banifatemi
[19] has proposed a recently CAS wavelet. Ramane et al. [27] have applied a new Hosoya polynomial
of path graphs for the numerical solution of Fredholm integral equations. In this paper, we proposed

the Legendre wavelet (LW) collocation method for the numerical solution of integral and integro-
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differential equation. The proposed method is explained and demonstrated the efficiency of the

scheme than the existing method by presenting some of the illustrative examples.

2. Properties of Legendre wavelets

2.1 Wavelets

In recent years, wavelets have found their way into many different fields of science and
engineering. Wavelets constitute a family of single functions constructed from dilation and translation
of a single function called the mother wavelet. When the dilation parameter a and the translation

parameter b vary continuously, we have the following family of continuous wavelets [20, 21].

V/a,b(t)=|a%l//(ﬂja aabERa a¢0
a

2.2 Legendre wavelets

Legendre wavelet L, (t) = L(k,A,m,t)have four arguments; k =2,3,..., i1=2n-1,

n=1,2,3,...,2"" m is the order of the Legendre polynomials and ¢ is the normalized time. They are

defined on the interval [0,1) by:

1\3 A2 k, -l il
L) (m+1y 271 (21-h), EH<r<il,
0, otherwise. 2.1

Here, [, (¢) are the well-known Legendre polynomial of order m, which are orthogonal with respect to

the weight function w(¢) = 1 and satisfy the following recursive formula:

lO(t) = 19

ll(t) = ta

o= - 0, m=12.3
m+1 m+1

The set of Legendre wavelets are an orthonormal set (Razzaghi (2000, 2001)).

The six basis functions are given by:
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For k = 2 implies n

_j-0.5
tj—

as,

6x6

Llo(t) = \/5
L, (t) =6 (41-1)

3 , 1
Lmu)=vﬁa(g{4r—n 2j

L, (1) = \/5
L, (t)=-/6(41-3)

Ly, (1) = N10 (%(M— 3 -1

1.4142 1.4142 1.4142 0
-1.6330 0 1.6330 0
0.5270 -1.5811 0.5270 0
0 0 0 1.4142
0 0 0 -1.6330
0 0 0 0.5270

)

I, 2 and M = 3 implies m = 0, 1, 2 then using collocation points

ISSN NO

;—<t<1

,j=12,....,N, Eq.2.1) gives the Legendre wavelet matrix of order (N =2""M) 6x6

0

0

0 0
1.4142 1.4142

0 1.6330
-1.5811  0.5270 |

3. Legendre Wavelet Collocation Method of Solution

In this section, we present a Legendre wavelet (LW) collocation method for solving integral and

integro-differential equation,

3.1 Integral Equations

Fredholm Integral equations:

Consider the Fredholm integral equations,

u(t)= £(O)+ [k (t.s)u(s)ds,

3.1)

where f(t) e L’[0,1), k,(t,s) € L*([0,1)x[0,1)) and u(¢) is an unknown function.

Let us approximate f'(¢),u(t), and k, (¢, s) by using the collocation points ¢, as given in the above

section 2.2. Then the numerical procedure as follows:
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STEP 1: Let us first approximate £ (¢) ] X "W (¢),and u(¢) 0 Y ¥ (¢), (3.2)

Let the function f(¢) € L*[0,1] may be expanded as:

f@=22%.L.0, (3.3)
n=1 m=0
where
x,.,=(),L,, (1)) (34

In (3.4), (., .) denotes the inner product.
If the infinite series in (3.3) is truncated, then (3.3) can be rewritten as:

ZA]

FO=S3 w1, ()= X"0), (35)

n=1 m=0

where X and W(f)are N x | matrices given by:

_ T
X = X105 Xy 5eees Xy 1 Xagaeees Xy g 5ees Xyt goeees Xyt ]

ST I G0
and
P(O) =L () Lyy (0)eees Ly gy (0 Lag (O)sos Ly Oeves Ly (O Ly, (O .
=[L(0), L,(t)srrs Ly, (O] .
STEP 2: Next, approximate the kernel function as: k,(¢,s) € L*([0,1]x[0,1])
k (t,s)0 T (K W (s), (3.8)
where K| is 27" M x 2*7' M matrix, with
[K,), = (L, (1), (K, (1,5), L (5))-
e, K, 0[¥' 0] [k(t.9)] [¥s)]" (3.9)
STEP 3: Substituting Eq. (3.2) and Eq. (3.8) in Eq. (3.1), we have:
YT ()Y =¥ ()X + jol BT (K, P (s)P7 (5)Yds
YT ()Y =¥ ()X + P (DK, (I;‘P(s)‘PT(s)ds)Y
Y)Y =¥ (1) (X +K,Y),
Then we get a system of equations as,
(I-K)Y=X. (3.10)

By solving this system obtain the Legendre wavelet coefficients ‘Y’ and substituting in step 4.
STEP 4: u(t)J Y "W (¢)

This is the required approximate solution of Eq. (3.1).
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Volterra Integral equations:

Consider the Volterra integral equations with convolution but non-symmetrical kernel

u(t)= )+ j.kz (t,s)u(s)ds, te[0,1]

where f(t) e L’[0,1), k,(t,s) € L’([0,1)x[0,1)) and u(¢) is an unknown function.

ISSN NO : 2249-7455

(3.11)

Let us approximate f(¢),u(t), and k, (¢, s) by using the collocation points Z; as given in the above

section 2.2. Then the numerical procedure as follows:

STEP 1: This can be rewritten in Fredholm integral equations, with a modified kernel k2 (¢,5) and

solved in Fredholm form [22] as,

u)= £+ [l (t.9)u(s)ds.

~ k(ts), 0<s<t
where, ky(t,s)=
0, t<s<l.

STEP 2: Let us first approximate f (¢) and u(?) as given in Eq. (3.2),
STEP 3: Next, we approximate the kernel function as: lgz (¢,9) el ([0, 1]%[0,1])
oy (0,5)0 W (1)K, ¥(s),
where K, is 27 M x2"" M matrix, with
(K,); = (L(0). (6 (1.5). L, (s).
—1 ~ 1
ie, K,O[W' O] | ks [ [¥6)]
STEP 4: Substituting Eq. (3.2) and Eq. (3.13) in Eq. (3.12), we have:
1
Y)Y =V ()X + jo YT (1)K, ¥ (s)¥T (5)Vds
YT ()Y =¥ ()X +¥ (DK, (jol Y(s)¥ () a’s) Y

Y)Y =¥ (1)(X +K,Y),

Then we get a system of equations as,

(I-K,)Y=X.

(3.12)

(3.13)

(3.14)

(3.15)

By solving this system obtain the Legendre wavelet coefficients ‘Y’ and substituting in step 5.

STEP 5: u(t) 0 Y" W (¢)

This is the required approximate solution of Eq. (3.11).
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Fredholm-Volterra integral equations:

Consider the Fredholm-Volterra integral equation of the second kind,

u®)=f(@)+ jkl (t,8)u(s)ds +j£/’c2 (t,s)u(s)ds, (3.16)

where f(¢)e L*[0,1), k,(¢,s)and k,(¢,s) € L*([0,1)x[0,1)) are known function and u(¢) is an
unknown function.

Let us approximate f(¢),u(¢), k,(¢,s) and k, (¢, s) by using the collocation points as follows:

STEP 1: Let us first approximate f (¢) and u(?) as given in Eq. (3.2),
STEP 2: Substituting Eq. (3.2), Eq. (3.9) and Eq. (3.14) in Eq. (3.16), we get a system of N equations
with N unknowns,

ie, (I-K, —K,)Y =X. (3.17)
where, [ is an identity matrix.

By solving this system we obtain the Legendre wavelet coefficient ‘Y and substituting this ‘Y in step
3.

STEP3: u(¢) 0 YW (¢)
This is the required approximate solution of Eq. (3.16).
Weakly singular Fredholm integral equations:

Consider the Weakly singular Fredholm integral equation,

u(s)

ut) = f(t)+ j ds 0<ts<l (3.18)

To solve Eq. (3.18), the procedure as follows:
STEP 1: We first approximate u(¢) as truncated series defined in Eq. (3.5). That is,

ut)=Y"¥(t) (3.19)
where Yand W(¢) are defined similarly to Egs. (3.6) and (3.7).
STEP 2: Then substituting Eq. (3.19) in Eq. (3.18), we get,

(Y
YW () = f(0)+ j (S) (3.20)
STEP 3: Substituting the collocation point?; in Eq. (3.20). We obtain,
T
YIW() = f(1)+ j ’i/\P_(s) (3.21)

YT‘P(S)
V ti

STEP 4: Now, we get the system of algebraic equations with unknown coefficients.

Y'(¥(t)-G)= f, where G = j
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Y'K = f, where K =(¥(x,)-G)
Solving the above system of equations, we get the Legendre wavelet coefficients ‘Y’ and then
substituting these coefficients in Eq. (3.19), we obtain the required approximate solution of Eq. (3.18).
3.2 Integro-differential Equations
Fredholm Integro-differential equations:
In this section, we concerned about a technique that will reduce Fredholm integro-differential
equation to an equivalent Fredholm integral equation. This can be easily done by integrating both
sides of the integro-differential equation as many times as the order of the derivative involved in the
equation from 0 to ¢ for every time we integrate, and using the given initial conditions. It is worth
noting that this method is applicable only if the Fredholm integro-differential equation involves the
unknown function u(¢) only, and not any of its derivatives, under the integral sign [1].

Consider the Fredholm integro-differential equation,
1
" (6)= f(O)+ [k (t,5)u(s)ds, u” =b, (3.22)
0

where f (1) e L*[0,1), k,(t,s) € L*([0,1)x[0,1)) and u ‘" (¢) is an unknown function.
where 1" (¢) is the n” derivative of u(¢) with respect to ¢ and b, are constants that define the

initial conditions.

Let us first, we convert the Fredholm integro-differential equation into Fredholm integral equation,
then we reduce it into a system of algebraic equations as given in Eq. (3.10), using this system we
solve the Eq. (3.22). Then we obtain the approximate solution of equation.

Volterra Integro-differential equations:

In this section, we concerned with converting to Volterra integral equations. We can easily convert the
Volterra integro-differential equation to equivalent Volterra integral equation, provided the kernel is a
difference kernel defined by A(z, s) = k(¢ — s). This can be easily done by integrating both sides of the
equation and using the initial conditions. To perform the conversion to a regular Volterra integral
equation, we should use the well-known formula, which converts multiple integrals into a single
integral [1].

ie.,

j j ........ ju(t)dt" =ﬁj(r—s)"_lu(s)ds

Consider the Volterra integro-differential equations,
t
(0= £+ [t 5)u(s)ds, u =b, (3.22)
0

where f(t) e L*[0,1), k,(¢,s) € L*([0,1)x[0,1)) and u'"’(¢) is an unknown function.
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where ") (¢) is the n” derivative of u(¢) with respect to ¢ and b, are constants that define the

initial conditions.

Let us first, we convert the Volterra integro-differential equation into Volterra integral equation, then
we reduce it into a system of algebraic equations as given in Eq. (3.15), using this system we solve the
Eq. (3.22). Then we obtain the approximate solution of equation.

4. Convergence Analysis

0

Theorem: The series solution u(?) :Z::IZ{]:O x,,L,, () defined in Eq. (3.5) using Legendre
wavelet method converges to u(¢) as given in [23].

Proof: Let I (R) be the Hilbert space and qu . defined in Eq. (3.2) forms an orthonormal basis.
M-
Let u(t)= Zi:o x, L, (t) where x,, = <u(t),Lp,l. (t)> for a fixed p.

Letus denote L (¢) = L(¢)andlet &; =<u(t),L(t)>.
Now we define the sequence of partial sums § of (aL(z,));Let S, and §_be the partial sums with

P =q. Wehave to prove §  is a Cauchy sequence in Hilbert space.

Let S, =" a,L(t).

Now (u(),S,) = <u(t),Zp: ajL(tj)> = Zp: ot [

J=1

2

We claim that [, -5, = 3 |o, . >4
J=q+1
Now
P 2 p p p )

> a L) =< M oaL), ajL(zj)>= Y| for p>q.

J=q+1 J=q+1 J=q+1 J=q+1

i S )
Therefore, z L) = Z|aj , for p>gq.

J=q+1 J=1

2
, . . P .
From Bessel’s inequality, we have z/_l|a j| is convergent and hence

2

P
Z ;L) >0 as g,p—> o
J=q+1
P
So, Z a;L(t,)||— 0 and { S,} is a Cauchy sequence and it converges to s (say).
J=q+l1

We assert that u(¢) = s,
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Now (s —u(t), L(t,)) = (s, L(t,)) = (u(t), L(£,)) = <117i£r010 Sp,L(zj)>—aj =a,-a,

B

This implies,
(s—u(e), L(z,))=0

Hence u(¢) = s and Z; a;L(t;). convergesto u(¢) as p —> 00 and proved.

5. Numerical experiments

In this section, we present Legendre wavelet (LW) collocation method for the numerical solution of
integral and integro-differential equation in comparison with existing method to demonstrate the
capability of the proposed method and error analysis are shown in tables and figures. Error function is

presented to verify the accuracy and efficiency of the following numerical results:

n

u,(t,)—u, (ti)”oo = \/Z(ue(ti) —u, (ti))z

i=1

E_ = Error function =

where u, and u  are the exact and approximate solution respectively.
Example 5.1 Let us consider the Fredholm integral equation of the second kind [4].
1
u(t)=t2+j0 (t+5) u(s) ds (5.1)
which has the exact solution u(t) =¢> —5t—17/6. Where f(t)=t" and kernel k,(t,s) =t +s.

Firstly, we approximate f(r) 1 X "W (¢),and u(t) 0 Y P (2),
Next, approximate the kernel function as: k,(¢,s) e L*([0,1]x[0,1])
ki(t,)0 YT (1)K, ¥ (s),
where K, is 27" M x 27 M matrix, with [K ], = (H, (1), (k,(t,5), H ,(5))).
KO 0] k][]

Next, substituting the function f(¢),u(t), and k,(¢,s) in Eq. (5.1), then using the collocation

points, we get the system of algebraic equations with unknown coefficients for k=2 and M =4 (N =

8), as an order 8x8& as follows:
YT ()Y =T (1) X + j;‘PT(t)Kl‘P(s)‘PT(S)YdS
(Y =¥ ()X + ¥ (K, (jol ()P (s) ds) Y

Y)Y =¥ ()X +K,Y),

1 2249-7455
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|
(I-K)Y =X, where,]= J.o W(s)¥ (s)ds is the identity matrix.

where, X=1[0.0589 0.0510 0.0132 0 04125 0.1531 0.0132 01,

[ 0.2500 0.0722 0.0000 0 0.5000 0.0722 0.0000 0.0000
0.0722  0.0000 0.0000 -0.0000 0.0722 0.0000 0 0.0000
0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0000
0.0000 -0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000
0.5000 0.0722 0.0000 0.0000 0.7500 0.0722 0.0000 0.0000
0.0722  0.0000 0 0.0000 0.0722 0.0000 0.0000 -0.0000
0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000
0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 |

By solving this system of equations, we obtain the Legendre wavelet coefficients,

Y=[-2.8284 -0.4593 0.0132 -0.0000 -4.2426 -0.3572 0.0132 -0.0000]

and substituting these coefficients in u(z) =Y W (t), we get the approximate solution u(¢) are

shown in table 1. Maximum Error analysis is shown in table 2 and compared with existing method
(Haar wavelet).

Table 1: Numerical results of the example 5.1.

Legendre

! Exact Wivelet
0.0625 -3.1419 -3.1419
0.1875 -3.7357 -3.7357
0.3125 -4.2982 -4.2982
0.4375 -4.8294 -4.8294
0.5625 -5.3294 -5.3294
0.6875 -5.7982 -5.7982
0.8125 -6.2357 -6.2357
0.9375 -6.6419 -6.6419

Table 2: Maximum Error analysis (£, ) of the example 5.1.

Method
(Lepik and Tamme (2005b)) Lw

8 7.0e-02 2.7e-14

16 1.7e-02 1.1e-14

32 4.3e-03 1.5e-14

64 1.3e-03 2.1e-14
Example 5.2 Next, consider the Fredholm integral equation,
i1

u(t) = 203 | IO (_5621(5/3)s ju(s) ds (5.2)

with exact solution u(?) =", Applying the present method and solved the Eq. (5.2), numerical

results are presented in table 3 and figure 1 in comparison with existing method [24].
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Fig. 1: Comparison of LW, BPF and TF with exact solutions.

Table 3: Numerical results is obtained for M = 8 and k = 3 of the example 5.2.

t

Exact

BPF

TF

LwW

0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1
1.221403

1.491825
1.822119
2.225541
2.718282
3.320117
4.055200
4.953032
6.049647
7.389056

1.301832
1.244627

1.501307
1.810922
2.184388
2.804810
3.383247
4.080975
4.922595
5.937783
7.162334

0.999844
1.221598

1.492294
1.822684
2.225880
2.717857
3.320648
4.056474
4.954570
6.050568
7.387901

1.000005
1.221410

1.497834
1.822130
2.225554
2.718298
3.320137
4.055224
4.953062
6.049683
7.389100

Example 5.3 Next, consider [15],

1
u(t) = sin(27t) + jo cos(t)u(s)ds .
which has the exact solution of the form u(¢) = sin(27¢) . Solving Eq. (5.3) using the present method,

(5.3)

we get the approximate solution of u(#) with the help of Legendre wavelet coefficients. Error

analysis is compared with existing method are shown in table 4.

Example 5.4 Next, consider [15],

u(f) = sin(27t) + jol ( —t—5* +9)u(s)ds

(5.4)

which has the exact solution of the formu(¢) = sin(27¢) . Solving Eq. (5.4) using the present method,

we get the approximate solution of u(z) with the help of Legendre wavelet coefficients. Error

analysis is compared with existing method are shown in table 4.
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Example 5.5 Next, consider [15],

u(t) = =26 +38 — 1 + jo‘(ﬁ —t—5? +5)u(s)ds (5.5)

which has the exact solution of the form u(?) = 2 +3t7—¢. Solving Eq. (5.5) using the present
method, we get the approximate solution of u(#) with the help of Legendre wavelet coefficients.

Error analysis is compared with existing method are shown in table 4.

Table 4: Comparison of the Error analysis.

Example 5.3 Example 5.4 Example 5.5
Method [15] E,,, (LW) Method [15] E,, (LW) Method[15] E,, (LW)
4 2.84e-02 3.33e-16 2.84e-02 2.22e-16 1.33e-10 0

8 2.38e-03 1.60e-15 2.38e-03 5.55e-16 3.79e-10 4.85e-17
16  2.09e-04 1.22e-15 2.10e-04 8.88e-16 3.26e-10 1.80e-16
32 1.20e-04 1.54e-15 2.00e-04 1.66e-15 4.83e-10 1.38e-16

Example 5.6 Let us consider the Volterra integral equation of the second kind [22],

u(t)= cos(t)—j.(t—s) cos(t—s)u(s)ds, 0<r<l1 (5.6)

which has the exact solution wu(z) =§(2 cos \/§t+1) . Where f(f)=cos(t) and kernel

k,(t,s) =—(t—s)cos(t—s).

Firstly, we approximate f (1) 0 X "W (¢),and u(¢) ) Y ¥ (2),
Next, approximate the kernel function as: k,(¢,s) e L*([0,1]x[0,1])
k,(t,s) 0 W (K, ¥ (s),
where K, is 27" M x 27" M matrix, with [K,], = (H (1), (k,(t,5), H ,(5))).
K00 0] [ho] [¥e]
Next, substituting the f(¢),u(t), and k, (¢, s) in Eq. (5.6) using the collocation points, we get the

system of algebraic equations with unknown coefficients for k = 2 and M = 4 (N = 8), as an order

8&x 8 as follows:

W ()Y =T ()X + jol YT (1)K, W ()7 (5)Yds
YT ()Y =¥ ()X +¥ (DK, (I;‘P(s)‘{’T(s)ds)Y

Y)Y =¥ (1)(X +K,Y),
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1
(I-K))Y =X, where, /= J;) W(s)¥ (s)ds is the identity matrix.

where, X=1[0.6780 -0.0251 -0.0064 0.0001 0.5120 -0.0691 -0.0048 0.0002],

[ -0.0388 0.0343 -0.0076 -0.0003 0 0 0 0
-0.0343 0.0261 0.0010 0.0020 0 0 0 0
-0.0076 -0.0010 0.0115 0.0000 0 0 0 0
0.0003 0.0020 -0.0000 0.0154 0 0 0 0

-0.2050 0.0432 0.0064 -0.0005 -0.0388 0.0343 -0.0076 -0.0003
-0.0432 -0.0143 0.0016 0.0001 -0.0343 0.0261 0.0010 0.0020
0.0064 -0.0016 -0.0001 0.0000 -0.0076 -0.0010 0.0115 0.0000
| 0.0005 0.0001 -0.0000 -0.0000 0.0003 0.0020 -0.0000 0.0154
By solving this system of equations, we obtain the Legendre wavelet coefficients ‘Y’

Y=1[0.6512 -0.0487 -0.0114 0.0002 0.3586 -0.1118 -0.0032 0.0004] and substituting these

coefficients in u(t) =Y W (¢), we get the approximate solution u#(¢) as shown in table 5.

Maximum error analysis is compared with Hermite wavelet is shown in table 6.

Table 5: Numerical results of the example 5.6.

t Exact Legendre Wavelet
0.0625 0.9961 0.9980
0.1875 0.9652 0.9655
0.3125 0.9047 0.9055
0.4375 0.8176 0.8190
0.5625 0.7078 0.7091
0.6875 0.5806 0.5802
0.8125 0.4419 0.4424
0.9375 0.2980 0.2981

Table 6: Comparison of maximum error analysis E,_,_of the example 5.6.

N HW Lw

8 1.52e-02 1.94e-03
16 4.00e-03 4.88e-04
32 1.00e-03 1.22e-04
64 2.49¢-04 3.05e-05
128 6.23e-05 7.62e-06

Example 5.7 Next, consider the Fredholm integro-differential equation [1],

1
u'(t) =361+ j u(s)ds, u(0y=1, 0<t<1 (5.7)
0

which has the exact solution u(¢) =1+8¢+12¢".

Firstly, integrating Eq. (5.7) w.r.t ¢, we get the Fredholm integral equation,
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1
u(t)=1+126 +¢[ u(s)ds, (5.8)
0

Solving Eq. (5.8) applying the present method, we obtain the approximate solution of #(¢) with the
help of Legendre wavelet coefficients. Maximum error analysis is shown in table 7 compared with

Hermite wavelet.

Table 7: Maximum error analysis of the example 5.7.

N HW LW

8 3.51e-01 1.06e-14
16 9.08e-02 3.55e-15
32 2.30e-02 1.06e-14
64 5.81e-03 3.55e-15
128 1.45e-03 2.13e-14

Example 5.8 Next, consider the Volterra integro-differential equation [25],
t
u'(t)=l—2tsint+J. u(s)ds, u(0)=0, 0<¢<1 (5.9)
0

which has the exact solution u(¢) =¢cost.

Firstly, integrating Eq. (5.9) w.r.t ¢, we get Volterra integral equation,
t
u(t)=t—2(sint—tcost)+j(z—s)u(s)ds, (5.10)
0

Solving Eq. (5.10) using the present method, we get the approximate solution of #(#) with the help of

Legendre wavelet coefficients. Maximum error analysis is shown in table 8 compared with Hermite
wavelet.

Table 8: Maximum error analysis of the example 5.8.

N HW LW

8 1.37e-02 1.21e-03
16 3.49e-03 3.10e-04
32 8.81e-04 7.82e-05
64 2.20e-04 1.96e-05
128 5.51e-05 4.92e-06

Example 5.9 Next, consider the Volterra-Fredholm integral equation [1],

u(t)= exp(t)+1+l+j(t—s)u(s) ds —Iexp(l—s)u(s) ds, 0<t<1 (5.11)

0
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which has the exact solution wu(z)=exp(f). Where f(#)=exp(t)+1+¢ and the kernels

k (t,s)=—exp(t—s)and k,(t,5)=(t—s).

Let us approximate f(¢),u(t), k,(¢,s)and k, (¢, s) as given in Eq. (3.5), Eq. (3.9) and Eq. (3.14)

using the collocation points, we get an system of N equations with N unknowns

we find, X=[1.8013 0.2339 0.0085 0.0004 2.7500 0.3195 0.0140 0.0006],

-0.5105
-0.0734
-0.0047
-0.0002
-0.8417
-0.1210
-0.0078
-0.0003

0.0403
0.0361
0.0085
0.0000
0.2500
0.0722
0.0000
0.0000

0.0734
0.0105
0.0007
0.0000
0.1210
0.0174
0.0011
0.0000

-0.0361
-0.0281
-0.0000
-0.0022
-0.0722
0.0000
-0.0000
0.0000

-0.0047
-0.0007
-0.0000
-0.0000
-0.0078
-0.0011
-0.0001
-0.0000

0.0085
0.0000
-0.0111
-0.0000
0.0000
0.0000
-0.0000
-0.0000

ie, (I-K,—K,)Y =X.

0.0002 -0.3096
0.0000 -0.0445
0.0000 -0.0029
0.0000 -0.0001
0.0003 -0.5105
0.0000 -0.0734
0.0000 -0.0047
0.0000 -0.0002

0.0000 0
-0.0022 0
0.0000 0
-0.0152 0
0.0000 0.0403

0.0000 0.0361
-0.0000 0.0085
0.0000  0.0000

0.0445 -0.0029
0.0064 -0.0004
0.0004 -0.0000
0.0000 -0.0000
0.0734 -0.0047
0.0105 -0.0007
0.0007 -0.0000
0.0000 -0.0000

0 0 0
0 0 0
0 0 0
0 0 0

-0.0361 0.0085
-0.0281 0.0000
-0.0000 -0.0111
-0.0022 -0.0000

By solving this system we obtain the Legendre wavelet coefficient,

Y=109168 0.1315 0.0077 -0.0003

0.0001 |
0.0000
0.0000
0.0000
0.0002
0.0000
0.0000
0.0000 |

0.0000
-0.0022
0.0000

-0.0152

1.5114 0.2168 0.0128 -0.0005],

where, I is an identity matrix,

Then, substituting these coefficients in u(¢) ] Y™\ (¢), we get the approximate solution of Eq.

(5.11) are shown in table 9. Maximum error analysis is shown in table 10 compared with Hermite

wavelet.
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Table 9: Numerical results of the example 5.9.

t Exact Legendre Wavelet
0.0625 1.0645 1.0632
0.1875 1.2062 1.2057
0.3125 1.3668 1.3675
0.4375 1.5488 1.5467
0.5625 1.7551 1.7529
0.6875 1.9887 1.9877
0.8125 2.2535 2.2544
0.9375 2.5536 2.5498

Table 10: Maximum error analysis of the example 5.9.

N HW LW

4 1.30e-02 6.12e-03
8 2.18e-02 3.77e-03
16 5.76e-03 9.56e-04
32 1.48e-03 2.40e-04
64 3.77e-04 6.02e-05

Example 5.10 Let us consider the weakly singular Fredholm integral equation of the second kind,

u(t) =12 ——+jMd 0<t<l. (5.12)

[

which has the exact solution u(?) =1, Applying the Legendre Wavelet Collocation Method, we

solved the Eq. (5.12) with £ = 1 and M = 3, then we obtain,

f =[-1.0389 -0.8167 -0.3722]
-1.0000 -1.0000 ~-1.0000

K =1-2.3094 -1.1547 0.0000
-0.5217 -2.0125 -0.5217

Next, we get the Legendre wavelet coefficients,

Y =[0.3333 0.2887 0.0745]

next, substituting these coefficients in Eq. (3.19), we get the accurate solution of Eq. (5.12) with exact
solution u(t) =t¢ *and the maximum error is 1.11e-016 compared to the existing method (Behzadi

(2014)) has the maximum error for n = 256 is 5.02e-06. This shows the efficiency of the proposed
method.
Example 5.11 Next, consider [26],

u(t) = t—— j&ds 0<r<l. (5.13)
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which has the exact solution u(¢) = \/; . We solved the Eq. (5.13) by approaching the present method

for k=1 and M = 5, we get the approximate solution as shown in table 5.11 and the maximum error is

2.98e-04.

Table 5.11 Numerical result of the example 5.11.

Legendre wavelet

t  Exact solution (k=1,M=5) Absolute Error
0.1 0.3162 0.3159 2.98e-04
0.2 0.4472 0.4445 2.70e-03
0.3 0.5477 0.5474 2.98e-04
0.4 0.6325 0.6328 3.29¢-04
0.5 0.7071 0.7068 2.98e-04
0.6 0.7746 0.7738 7.54e-04
0.7 0.8367 0.8364 2.98e-04
0.8 0.8944 0.8950 5.39¢-04
0.9 0.9487 0.9484 2.98e-04

Example 5.12 Lastly, consider [26],

u(t) = exp(t) — 4.0602 + |

@ds, 0<t<l.
—t

N

(5.14)

which has the exact solution #(¢) = exp(¢) . Applying the proposed method to solve Eq. (5.14) for k

=1 and M = 8. We obtain the approximate solution u(f) as shown in table 12 and the maximum error

is 4.30e-05 as shown in figure 2.
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Table 12: Numerical result of the example 5.12.

Present method

t  Exact solution

(k=1,M=38)
0.1  1.105170 1.105213
02  1.221402 1.221445
0.3  1.349858 1.349901
04  1.491824 1.491867
0.5  1.648721 1.648764
0.6  1.822118 1.822161
07  2.013752 2.013795
0.8  2.225540 2.225583
09  2.459603 2.459646
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Fig. 2: Error analysis of the example 5.12.

6. CONCLUSION

In this paper, we proposed the Legendre wavelet collocation method for solving the integral and
integro-differential equations. The proposed scheme reduces an integral equation into a set of
algebraic equations. The numerical result shows that the accuracy improves with increasing the level
of resolution N, for better accuracy, the larger N is recommended. Error analysis is presented in
comparison with the existing methods as shown in tables and figures. Hence the present scheme

shows the efficiency of the Legendre wavelet collocation method.
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