On $w - \delta - \mathfrak{T}$ —Open Sets

Vidhu Gupta

PG Department of Mathematics, Khalsa College, Patiala – 147001 Punjab, India

Abstract. In this paper we will introduce $w - \delta - \mathfrak{T} -$ open sets and discuss some properties and characterizations of it. Also Examples are given throughout the paper.

Key Words and phrase. $w-\alpha-\mathfrak{T}$ – open , w - semi – \mathfrak{T} - open , w – pre – \mathfrak{T} - open , $w-\beta-\mathfrak{T}$ – open , $w-\delta-\mathfrak{T}$ – open

1. Introduction

The subject of ideals in topological spaces were introduced by Kuratowski [3] and further studied by Vaidyanathaswamy [5]. Corresponding to an ideal a new topology $\tau^*(\mathfrak{T},\tau)$ called the * - topology was given which is generally finer than the original topology having the kuratowski closure operator $cl^*(A) = A \cup A^*(\mathfrak{T},\tau)$ [6], where $A^*(\mathfrak{T},\tau) = \{x \in X : U \cap A \notin \mathfrak{T} \text{ for every open subset } U \text{ of } x \text{ in } X \}$ called a local function of A with respect to \mathfrak{T} and τ . We will write τ^* for $\tau^*(\mathfrak{T},\tau)$.

The following section contains some definitions and results that will be used in our further sections.

Definition 1.1.[3] Let (X, τ) be a topological space. An ideal $\mathfrak T$ on X is a collection of non-empty subsets of X such that (a) $\emptyset \in \mathfrak T$ (b) $A \in \mathfrak T$ and $B \in \mathfrak T$ implies $A \cup B \in \mathfrak T$ (c) $B \in \mathfrak T$ and $A \subset B$ implies $A \in \mathfrak T$.

Definition 1.2.[1] Let (X, τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be $\delta - \mathfrak{T}$ – open if $int(cl^*(A)) \subset cl^*(int(A))$.

Definition 1.3. [4] Let (X, τ, \mathfrak{T}) be an ideal space and A be any subset of X. Then A is said to be

- a.) $w \alpha \mathfrak{T}$ open if $A \subset int^*(cl(int^*(A)))$.
- b.) $w \text{semi} \mathfrak{T} \text{open if } A \subset cl(int^*(A))$.
- c.) $w \text{pre} \mathfrak{T} \text{open if } A \subset int^*(cl(A))$.
- d.) $w \beta \mathfrak{T}$ open if $A \subset cl(int^*(cl(A)))$.

2. Results

Definition 2.1. Let (X, τ, \mathfrak{T}) be an ideal topological space. Then a subset A of X is called $w - \delta - \mathfrak{T}$ – open if $int^*(cl(A)) \subset cl(int^*(A))$ and a subset A of X is called $w - \delta - \mathfrak{T}$ – closed if its complement is open.

The following examples show that there is no relationship between $w - \delta - \mathfrak{T}$ – open sets and $\delta - \mathfrak{T}$ – open sets.

Example 2.1. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a, b\}, X\}$ and an ideal $\mathfrak{T} = \{\emptyset, \{a\}\}$

So,
$$\tau^* = \{ \emptyset, \{b\}, \{a, b\}, \{b, c\}, X \}$$

Consider the subset $A = \{b, c\}$

Then, $int(cl^*(A)) = int(\{a,b,c\})$

$$= \{a,b,c\}$$

and
$$cl^*(int(A)) = cl^*(\emptyset) = \emptyset$$

$$\therefore int(cl^*(A)) \not\subset cl^*(int(A))$$

 \Rightarrow A is not $\delta - \mathfrak{T}$ – open subset of X.

But, $int^*(cl(A)) = int^*(\{a, b, c\})$

$$= \{a, b, c\}$$

and $cl(int^*(A)) = cl(\{b,c\})$

$$= \{a, b, c\}$$

$$: int^*(cl(A)) \subset cl(int^*(A))$$

 \Rightarrow A is $w - \delta - \mathfrak{T}$ – open subset of X.

Hence, $w - \delta - \mathfrak{T} - \text{open} \Rightarrow \delta - \mathfrak{T} - \text{open}$

Example 2.2. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a, b\}, X\}$ and an ideal $\mathfrak{T} = \{\emptyset, \{a\}\}$

So,
$$\tau^* = \{ \emptyset, \{b\}, \{a, b\}, \{b, c\}, X \}$$

Consider the subset $A = \{a, c\}$

Then, $int(cl^*(A)) = int(\{a, c\})$

$$= \emptyset$$

and
$$cl^*(int(A)) = cl^*(\emptyset) = \emptyset$$

$$\therefore int(cl^*(A)) \subset cl^*(int(A))$$

$$\Rightarrow$$
 A is $\delta - \mathfrak{T}$ – open subset of X.

But,
$$int^*(cl(A)) = int^*(\{a,b,c\})$$

$$= \{a, b, c\}$$

and
$$cl(int^*(A)) = cl(\emptyset)$$

$$= \emptyset$$

$$: int^*(cl(A)) \not\subset cl(int^*(A))$$

$$\Rightarrow$$
 A is not $w - \delta - \mathfrak{T}$ – open subset of X.

Hence,
$$\delta - \mathfrak{T} - \text{open} \Rightarrow w - \delta - \mathfrak{T} - \text{open}$$

Proposition 2.1. Let (X, τ, \mathfrak{T}) be an ideal topological space, then a subset of X is $w - \text{semi} - \mathfrak{T} - \text{open}$ if and only if it is both $w - \delta - \mathfrak{T} - \text{open}$ and $w - \beta - \mathfrak{T} - \text{open}$.

Proof. Firstly, Let A be $w - \text{semi} - \mathfrak{T} - \text{open subset of } X$.

Then, $A \subset cl(int^*(A))$

$$\Rightarrow A \subset cl(int^*(cl(A)))$$

$$\Rightarrow$$
 A is $w - \beta - \mathfrak{T}$ – open subset of X.

Also,
$$int^*(cl(A)) \subset cl(A) \subset cl(cl(int^*(A)))$$

$$= cl(int^*(A))$$

$$\Rightarrow int^*(cl(A)) \subset cl(int^*(A))$$

$$\therefore$$
 A is $w - \delta - \mathfrak{T}$ – open subset of *X*.

Conversely.

Let A be $w - \delta - \mathfrak{T}$ – open and $w - \beta - \mathfrak{T}$ – open subset of X.

This implies that

$$int^*(cl(A)) \subset cl(int^*(A))$$
(1)

and
$$A \subset cl\left(int^*(cl(A))\right)$$
(2)

Now,
$$A \subset cl(int^*(cl(A)))$$

$$\subset cl\left(cl(int^*(A))\right)$$
 Using (1)

$$= cl(int^*A)$$

Hence, A is $w - \text{semi} - \mathfrak{T} - \text{open subset of } X$.

The following example shows that there is no relationship between $w - \delta - \mathfrak{T}$ open sets and $w - \beta - \mathfrak{T}$ open sets.

Example 2.3. In Example 2.1, if we take the subset $A = \{a\}$

Then,

$$int^*(cl(A)) = int^*(\{a,b,c\})$$

$$= \{a, b, c\}$$

and
$$cl(int^*(A)) = cl(\emptyset)$$

$$= \emptyset$$

$$: int^*(cl(A)) \not\subset cl(int^*(A))$$

$$\Rightarrow$$
 A is not $w - \delta - \mathfrak{T}$ – open subset of X.

But,
$$cl(int^*(cl(A))) = cl(\{a,b,c\}) = \{a,b,c\}$$

$$\Rightarrow A \subset cl(int^*(cl(A)))$$

$$\therefore$$
 A is $w - \beta - \mathfrak{T}$ – open subset of X.

Hence,
$$w - \beta - \mathfrak{T}$$
 – open $\Rightarrow w - \delta - \mathfrak{T}$ – open.

Also, for the subset $A = \{c\}$

$$int^*(cl(A)) = int^*(\{c\})$$

$$= \emptyset$$

and
$$cl(int^*(A)) = cl(\emptyset)$$

$$= \emptyset$$

$$\Rightarrow int^*(cl(A)) \subset cl(int^*(A))$$

$$\Rightarrow$$
 A is $w - \delta - \mathfrak{T}$ – open subset of X.

But
$$cl(int^*(cl(A))) = cl(\emptyset) = \emptyset$$

$$\Rightarrow$$
 A is not $w - \beta - \mathfrak{T}$ – open subset of X.

Hence,
$$w - \delta - \mathfrak{T} - \text{open} \Rightarrow w - \beta - \mathfrak{T} - \text{open}$$
.

Proposition 2.2. Let (X, τ, \mathfrak{T}) be an ideal topological space. Then every τ^* – open is $w - \delta - \mathfrak{T}$ – open subset of X.

Proof. Let G be τ^* – open subset of X.

Then, $G = int^*(G)$ (1)

Since, $int^*(cl(G)) \subset cl(G)$

 $= cl (int^*(G))$ Using (1)

So, $int^*(cl(G)) \subset cl(int^*(G))$

 \Rightarrow every τ^* – open subset of X is $w - \delta - \mathfrak{T}$ – open.

Proposition 2.3. Let (X, τ, \mathfrak{T}) be an ideal topological space. Then a subset of X is $w - \alpha - \mathfrak{T}$ – open if and only if it is both $w - \delta - \mathfrak{T}$ – open and $w - \text{pre} - \mathfrak{T}$ – open .

Proof. Firstly, Let *A* be $w - \alpha - \mathfrak{T}$ – open subset of *X*.

Then, $A \subset int^* (cl(int^*(A)))$

$$\subset cl (int^*(A))$$

 \Rightarrow A is $w - \text{semi } -\mathfrak{T} - \text{open}$.

 \therefore by proposition 2.1,

A is $w - \delta - \mathfrak{T}$ – open subset of X.

Also, $A \subset int^* \left(cl(int^*(A)) \right)$

$$\subset int^*(cl(A))$$
 since, $int^*(A) \subset A$

 \Rightarrow A is $w - \text{pre} - \mathfrak{T} - \text{open subset of } X$.

Conversely.

Let, A be $w - \delta - \mathfrak{T}$ – open and w – pre – \mathfrak{T} – open subset of X.

Then, $int^*(cl(A)) \subset cl(int^*(A))$

$$\Rightarrow int^* (int^*(cl(A))) \subset int^* (cl(int^*(A)))$$

$$\Rightarrow int * (cl(A)) \subset int^* (cl(int^*(A)))$$

Further, A is $w - \text{pre} - \mathfrak{T} - \text{open subset of } X$.

So,
$$A \subset int^*(cl(A))$$

$$\Rightarrow A \subset int^* \big(cl(A) \big) \subset int^* \big(cl \big(int^*(A) \big) \big)$$

 \Rightarrow A is $w - \alpha - \mathfrak{T}$ – open subset of X.

Proposition 2.4. Let (X, τ, \mathfrak{T}) be an ideal topological space and A, B be two subsets of X such that $A \subset B \subset cl(A)$. If A is $w - \delta - \mathfrak{T}$ – open then B is $w - \delta - \mathfrak{T}$ – open subset of X.

Proof. Let $A \subset B \subset cl(A)$ and A be $w - \delta - \mathfrak{T}$ – open subset of X.

Then,
$$int^*(cl(A)) \subset cl(int^*(A))$$

Now, $A \subset B$

$$\Rightarrow cl(int^*(A)) \subset cl(int^*(B))$$

Also, $B \subset cl(A)$

$$\Rightarrow cl(B) \subset cl(cl(A))$$

$$= cl(A)$$

$$\Rightarrow int^*(cl(B)) \subset int^*(cl(A))$$

$$\Rightarrow int^*(cl(B)) \subset int^*(cl(A)) \subset cl(int^*(B))$$

$$\therefore int^*(cl(B)) \subset cl(int^*(B))$$

Hence, B is $w - \delta - \mathfrak{T}$ – open subset of X.

References

- [1] A. Acikgoz, T. Noiri and S.Yuksel, On $\delta \mathfrak{T}$ –open sets and decomposition of $\alpha \mathfrak{T}$ continuity , Acta Math. Hunger., 102 (2004), 349-357.
- [2] D.Jankovic and T.R. Hamlett, *New topologies from old via ideals*, The American Mathematical Monthly, 97, No. 4 (1990), 295-310
- [3] K. Kuratowski, Topology, volume I, Academic Press, New York, 1966.
- [4] N. Goyal, *On some open sets via ideals*, AGU international journal of science and technology, 5(2017), 183-187.
- [5] R. Vaidyanathaswamy, The localisation Theory in Set Topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
- [6] -----, Set Topology, Chelsea Publishing Company, New York,1946.