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Abstract: Multiplication is one of the most important 

operations in computer arithmetic. In this paper, an 

exportable application-specific instruction-set elliptic curve 

cryptography processor based on redundant signed digit 

representation is proposed. The processor employs extensive 

pipelining techniques for Karatsuba-Ofman method to 

achieve high throughput multiplication. In this paper 

Nikhilam sutra is used for multiplication is the extension of 

this paper. The speed of the proposed architecture is 

improved with balancing the area and the power. Even 

though there is a deviation in lower order bits, this method 

shows larger difference in higher bit lengths.  

 

Index Terms— Application-specific instruction-set 

processor (ASIP), elliptic curve cryptography (ECC), field-

programmable gate array (FPGA), Karatsuba–Ofman 

multiplication, Nikhilam multiplier, redundant signed digit 

(RSD). 

 
1. INTRODUCTION 

           Elliptic curve cryptography (ECC) is a public 

key encryption technique based on elliptic curve 

theory that can be used to create faster, smaller, and 

more efficient cryptographic keys. ECC helps to 

establish equivalent security with lower computing 

power and battery resource usage; it is becoming 

widely used for mobile applications [1]. In prime field 

ECC processors, carry free arithmetic is necessary to 

avoid lengthy data paths caused by carry propagation. 

Redundant schemes, such as carry save arithmetic 

(CSA), redundant signed digits (RSDs), or residue 

number systems (RNS), have been utilized in various 

designs. Carry logic or embedded digital signal 

processing (DSP) blocks within field programmable 

gate arrays (FPGAs) are also utilized in some designs 

to address the carry propagation problem. It is 

necessary to build an efficient addition data path since 

it is a fundamental operation employed in other 

modular arithmetic operations. Modular 

multiplication is an essential operation in ECC.  

Two main approaches may be employed. The first is 

known as interleaved modular multiplication using 

Montgomery’s method. Montgomery multiplication is 

widely used in implementations where arbitrary 

curves are desired. Another approach is known as 

multiply then-reduce and is used in elliptic curves built 

over finite fields of Merssene primes. Merssene 

primes are the special type of primes which allow for 

efficient modular reduction through series of additions 

and subtractions. In order to optimize the 

multiplication process, some ECC processors use the 

divide and conquer approach of Karatsuba–Ofman 

multiplications, where others use embedded 

multipliers and DSP blocks within FPGA fabrics. 

This paper proposes a new RSD-based prime field 

ECC processor with high-speed operating frequency. 

In this paper, we demonstrate the performance of left-

to-right scalar point multiplication algorithm. The 

overall processor architecture is of regular cross bar 

type with 256 digit wide data buses. The design 

strategy and optimization techniques are focused 

toward efficient individual modular arithmetic 

modules rather than the overall architecture.  

The remaining of this paper is organized as 

follows. Section 2 provides background information 

on ECC systems. Section 3 presents the overall 

architecture of the proposed processor; the 

architecture of the modular arithmetic unit (AU) is 

presented. In Section 4, implementation of the project 

is discussed. Finally, Results and conclusion is drawn 

in Section 5 and Section 6. 
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2. RELATED WORK 

 

2.1 Karatsuba–Ofman Multiplication: 

The complexity of the regular multiplication 

using the schoolbook method is O (n2). Karatsuba and 

Ofman proposed a methodology to perform a 

multiplication with complexity O (n1.58) by dividing 

the operands of the multiplication into smaller and 

equal segments. Having two operands of length n to be 

multiplied, the Karatsuba–Ofman methodology 

suggests splitting the two operands into high-(H) and 

low-(L) segments. 

𝑎𝐻 = (𝑎𝑛−1, … … . , 𝑎
[
𝑛
2

]
),      

      𝑎𝐿 = (𝑎[𝑛/2] − 1, … … , 𝑎0) 

𝑏𝐻 = (𝑏𝑛−1, … … , 𝑏
[
𝑛
2

]
),              

𝑏𝐿 = (𝑏[𝑛/2] − 1, … … , 𝑏0) 

Consider β as the base for the operands, where β is 2 

in case of integers and β is x in case of polynomials. 

Then, the multiplication of both operands is performed 

as follows: considering  

𝐶 = 𝐴𝐵 = (𝑎𝐿 + 𝑎𝐻𝛽[𝑛/2])(𝑏𝐿 + 𝑏𝐻𝛽[𝑛/2])

= 𝑎𝐿𝑏𝐿(𝑎𝐿𝑏𝐻 + 𝑎𝐻𝑏𝐿)𝛽[𝑛/2]

+ 𝑎𝐻𝑏𝐻𝛽𝑁 … … … … … . (1) 

Hence, four half-sized multiplications are needed, 

where Karatsuba methodology reformulate (1) to 

𝐶 = 𝐴𝐵 = (𝑎𝐿 + 𝑎𝐻𝛽[𝑛/2])(𝑏𝐿 + 𝑏𝐻𝛽[𝑛/2]) 

= 𝑎𝐿𝑏𝐿+((𝑎𝐿 + 𝑎𝐻)(𝑏𝐿 + 𝑏𝐻) − 𝑎𝐻𝑏𝐻 −

     𝑎𝐿𝑏𝐿)𝛽[𝑛/2] + 𝑎𝐻𝑏𝐻𝛽[𝑛] … … … … … . . (2) 

Therefore, only three half-sized multiplications are 

needed. The original Karatsuba algorithm is 

performed recursively, where the operands are 

segmented into smaller parts until a reasonable size is 

reached, and then regular multiplications of the 

smaller segments are performed recursively. 

 

2.2RedundantSignedDigits: The RSD representation, 

first introduced by Avizienis, is a carry free arithmetic 

where integers are represented by the difference of two 

other integers. An integer X is represented by the 

difference of its x+ and x− components, where x+ is 

the positive component and x− is the negative 

component. The nature of the RSD representation has 

the advantage of performing addition and subtraction 

without the need of the two’s complement 

representation. On the other hand, an overhead is 

introduced due to the redundancy in the integer 

representation; since an integer in RSD representation 

requires double word length compared with typical 

two’s complement representation. In radix-2 balanced 

RSD represented integers, digits of such integers are 

1, 0, or −1. 

3. PROPOSED METHODOLOGY 

 

The proposed P256 ECC processor consists 

of an AU of 256 RSD digit wide, a finite-state machine 

(FSM), memory, and two data buses. The processor 

can be configured in the pre-synthesis phase to support 

the P192 or P224 NIST recommended prime curves. 

Fig. 1 shows the overall processor architecture. Two 

sub control units are attached to the main control unit 

as add-on blocks. These two sub control units work as 

FSMs for point addition and point doubling, 

respectively. Different coordinate systems are easily 

supported by adding corresponding sub control blocks 

that operate according to the formulas of the 

coordinate system. 

 

Fig. 1 Processor Architecture 
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3.1 Arithmetic unit: 

Modular Addition and Subtraction Addition 

is used in the accumulation process during the 

multiplication, as well as, in the binary GCD modular 

divider algorithm [16]. In the proposed 

implementation, radix-2 RSD representation system as 

carry free representation is used. In RSD with radix-2, 

digits are represented by 0, 1, and −1, where digit 0 is 

coded with 00, digit 1 is coded with 10, and digit −1 is 

coded with 01. In Fig. 2, an RSD adder is presented 

that is built from generalized full adders. 

 

 

Fig. 2 RSD adder 

3.2 Modular Multiplication: 

Karatsuba multiplier recursive nature is 

considered a major drawback when implemented in 

hardware. Hardware complexity increases 

exponentially with the size of the operands to be 

multiplied. To overcome this drawback, Karatsuba 

method is applied at two levels. A recursive Karatsuba 

blocks that works depth wise, and an iterative 

Karatsuba that works widthwise. 

 

Fig. 3 Modular addition subtraction block diagram. 

The block diagram of the recursive Karatsuba 

multiplier is shown in Fig. 3, where data dependences 

are clearly noticed. As shown in Fig. 4, Karatsuba 

method requires performing a subtraction at every 

level, which is an advantage of the proposed 

implementation since subtraction is performed with no 

added cost in RSD representation. The block diagram 

of the recursive Karatsuba module is built from three 

half-sized recursive Karatsuba blocks and some RSD 

adders/subtractors. There is one 1-digit RSD 

multiplier that is used to multiply the carry digits from 

the middle addition. According to Fig. 4, the critical 

data path of the recursive Karatsuba is divided into two 

paths. The first path goes through the middle half-

sized recursive Karatsuba block, and the other goes 

through the cross product of the middle addition with 

multiplexers and some adders. 

 

Fig. 4 Karatsuba recursive block 

NIST Reduction: Generalized Merssene primes are the 

special type prime numbers that allow fast modular 

reduction. Regular division is replaced by few 

additions and subtractions [15]. Such primes are 

represented as p = f (t), where t is a power of 2. The 

modulus of the P256 curve is Merssene prime p = 

2256−2224+2192+296−1.   

Due to the redundancy nature of the RSD 

representation, the multiplication process may 

produce results that are represented by more than 512 
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digits and these results are still in the range −p2 < A < 

p2. These one or two extra digits are outside the range 

of the NIST reduction process.  

Hence, we derived new formulas to include 

these extra digits in the reduction process. The new 

reduction process has one extra 256-digit term, D5, 

along with some modification of the previously 

existed terms. This term is added conditionally, 

whether the extra digit is set or not. Thus, two 

additions are the total overhead required to handle the 

extra digits caused using the RSD representation. The 

modified reduction formula is B = T + 2S1 + 2S2 + S3 

+ S4 − D1 − D2 − D3 − D4 − D5 mod p, where A16 

represents the extra digits produced by RSD Karatsuba 

multiplier. 

 

 

Fig. 5 Multiplication of integers (95*96) using 

karatsuba method 

 

Fig. 6 Mod P256 Reduction block 

In order to accommodate the extra digit 

produced by the RSD Karatsuba multiplier, NIST 

reduction is reformulated [15]. The resultant reduction 

scheme consists of three extra additions. However, 

through reformulation and combining the original 

terms with the additional terms, the reduction scheme 

is optimized. Accordingly, the modular multiplier is 

built with a Karatsuba multiplier, modular RSD adder, 

and some registers to hold the 256-digit terms. Fig. 6 

shows the block diagram of the Mod P256 RSD 

multiplier. A controller is used to control the flow of 

the terms to the modular adder and at every turn, the 

result of the modular addition is accumulated and fed 

back to the adder. The cross-bar in Fig. 6 shows the 

wiring of the 32-digit words to their respective 

locations within the extended NIST reduction 

registers. 

3.3 High-Radix Modular Division: 

Binary GCD algorithm is an efficient way of 

performing modular division since it is based on 

addition, subtraction, and shifting operations [16]. The 

complexity of the division operation comes from the 

fact that the running time of the algorithm is 

inconsistent and is input dependent. 
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Fig. 7 Modular divider block 

3.4 Vedic Sutra – Nikhilam sutra 

 

The Nikhilam multiplier full name is 

Nikhilam Navatascharam Dashtah is one of the sutra 

which is taken from the Vedic mathematics. First, 

Nikhilam Navatascharam Dashtah sutra means all 

from 9 and last from 10. The Sutra is well explained 

for multiplication of decimal numbers. In proposed 

system we tend to area unit measurement Input Adder 

Unit, currently it is replaced by sacred text multiplier 

factor. By doing this we are able to get less power 

consumption, high accuracy and reduced delay. 

The sixteen sacred text Sutras apply to and 

can copy nearly each branch of arithmetic. They apply 

even to advanced issues involving an oversized variety 

of mathematical operations.  Among these sutras, 

Nikhilam Sutra stipulates subtraction of a number 

from the nearest power of 10 i.e. 10, 100, 1000, etc. 

The power of 10 from which the difference is 

calculated is called the Base. These numbers are 

considered to be references to find out whether given 

number is less or more than the Base. If the given 

number is 104, the nearest power of 10 is 100 and is 

the base. Hence the difference between the base and 

the number is 4, which is Positive and it is called 

NIKHILAM. The value of Nikhilam may be reference 

base, the Nikhilam of 87 is -13 and that of 113 is +13 

respectively. Nikhilam Sutra in Vedic Mathematics 

can be used as shortcuts to multiply numbers, divide 

numbers in faster approach. In English it is translated 

as “All from 9 and last from 10”. I.e. subtract last digit 

from 10 and rest of digits from 9. Multiplication using 

Nikhilam Sutra is used when numbers are closer to 

power of 10 i.e. 10, 100, 1000, etc. The 4*4 Nikhilam 

multiplier architecture and its operation are shown in 

below figure. Here the two inputs are first 

complimented and those complimented results are 

multiplied. Here the multiplier used also plays an 

important role in calculating delay. Then the multiplier 

output is added to the two inputs a and b. 

 
Fig. 8 Nikhilam Multipier’s Architecture 

 

 
Fig. 9 Multiplication of integers (95*96)  

             Using Nikhilam method 

 

4. RESULTS  

 

In this section we evaluated the multipliers 

performance employing Active HDL and Xilinx 14.5i 

to code and synthesize respectively the module 

proposed. 
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 Technology Schematic of existing model 

 

 
 

Fig. 10 Technology Schematic diagram for  

Existing model 

 

 RTL Schematic of existing model 

 

 
 

Fig. 11 RTL Schematic diagram for  

Existing model 

 

 Simulation Methodology 

 

Xilinx 14.5i has been used to simulate the waveforms. 

The simulator carefully modeled the interconnections, 

the associated blocks and the propagation delays. 

 

 
 

Fig. 12 Simulation result for Existing model 

 

Design utilization Summary  

 

 
 

Fig. 13 Design summary for Existing model 

 

Timing Report for existing model 

   

Timing constraint: Default period analysis for clock  

 

Clock period: 10.189ns at frequency of 98.145MHZ 

 

Total number of paths / destination ports: 2710024 

 

Delay: 10.189ns (Levels of Logic = 30) 

 

4.1 Extension Results 

In this section we show the results for the multiplier 

on Nikhilam sutra and compare these with the 

karatsuba multiplier. Multiplier based on Nikhilam 

algorithm utilizes smaller area and produces littler 

delay than the karatsuba multiplier.  

This reduction in the delay is attributed to be 

diminished consumption of area by the designed 

multiplier which possesses quite lesser number of 

internal blocks. Our results show that the Multiplier 

based on Nikhilam sutra. 
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Technology Schematic of Nikhilam sutra model 

 

 
Fig. 14 Technology Schematic diagram for Nikhilam 

sutra (proposed) model 

 

RTL Schematic of Nikhilam sutra model 

 

 
Fig. 15 RTL Schematic diagram for Nikhilam sutra 

(proposed) model 

 

Simulation results for Nikhilam sutra model 

 

 
Fig. 16 Simulation results for Nikhilam sutra 

(proposed) model 

 

 

 

 

Design Summary 

 

 
Fig. 17 Design summary report for Nikhilam sutra 

(proposed) model 

 

 

 

Timing Report for Nikhilam sutra model 

 

Timing constraint: Default period analysis for clock  

 

Clock period: 7.499ns at frequency of 133.346 MHZ 

 

Total number of paths / destination ports: 482008 

 

Delay: 7.499ns (Levels of Logic = 18) 

 

 

5. CONCLUSION 

 

This multiplier provides high-speed 

performance for the elliptic curve cryptography for 

encryption of binary bits of this Nikhilam multiplier is 

very much less when compared to the existing model. 

The pipelining in the proposed multiplier is to achieve 

high throughput performance by a fully LUT-based 

FPGA implementation. This reduces the time 

consumption for the encryption/decryption in ECC 

process. Furthermore, an efficient modular addition/ 

subtraction are introduced based on checking the LSD 

of the operands only. This proposed Nikhilam sutra 

multiplier is give high throughput and more efficient 

and also in terms of area, speed and also reduces time 

delay as we see in the below table is comparison of 

existing and proposed model. 
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Logic 

utilization 

 

Existing 

model 

 

Proposed 

model 

 

Delay 

 

10.189ns 

 

7.499ns 

 

Frequency 

 

98.145MHZ 

 

133.346MHZ 

 

Lookup tables 

 

1741 

 

439 

 

Input/output 

blocks 

 

132 

 

132 

 

Number of 

slices 

 

930 

 

233 

 

Table 1: Comparison of existing model  and 

proposed model 

 

 The main advantages of our processor 

include the exportability to other FPGA and ASIC 

technologies and expandability to support different 

coordinate systems and point multiplication 

algorithms. Equally, new demands arising from 

unconventional applications have stimulated new 

solutions, combining proven technologies in novel and 

innovative ways. 
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