
Balancing Load in Parallel Computing through Program Slicing

Dr. P.A.Tijare1, Dr. P.R.Deshmukh2
1Associate Professor, Sipna College of Engineering & Technology, Amravati,

2Professor, Govt. College of Engineering, Nagpur, India
1pritishtijare@rediffmail.com, 2pr_deshmukh@yahoo.com

Abstract—Execution time of a program can be diminished and performance can be

upgraded by balancing the load. Our work proposes parallel task execution. By watching
the load on the system, tasks can be executed for may iterations through various nodes.
Our analyses demonstrate the proposed algorithm lessens finishing time in parallel
computing task.

Keywords— dynamic load balancing, parallel computing, slicing

1. Introduction

Parallel Computing is a kind of calculation where we can accomplish load balancing
by partitioning computer problems into littler jobs and afterward execute parallel on
different systems.

The ongoing advancement in the parallel processing has given numerous facilities
in transmission and control of information through network. Notwithstanding, these
facilities and advancement came with the challenges in parallel computing. High
complexity of building parallel application is regularly referred as one of the
significant obstacles to the standard selection of Parallel Computing. Numerous
scientific computations require a lot of computing time, the computation duration can
be diminished by isolating an issue more than a few processors.

There are various load balancing algorithms exists which encourages the task of
recognizing a reasonable load balancing methodology. Distinctive groupings have just
been anticipated; however every classification was centered on specific applications.
Couples of them are associated with process scheduling in distributed operating
systems and with job scheduling in parallel applications dependent on functional
disintegration.

It is a challenge to balance load on multi computers since the processors are
independent and furthermore the correspondence overhead expense is incorporated to
discover present load information. For solving/running distributed and parallel program
applications, it is smarter to utilize parallel and distributed processing condition[1].

2. Related Work

To improve the eventual outcomes of the system, researches are carried out by using
parallel computing. At present, Message Passing Interface is the one of the parallel
programming tool in cluster computing [2].

.

In [3], proposed strategy in Message Passing Interface parallel program which
transfers the tasks between nodes adequately based on system load. Load balance
incorporates static and dynamic load balance, static load balance is not relate to state of
system and it has low efficiency; while dynamic load balancing algorithm can balance the
loads of nodes, having great practicability [3].

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 1479

In research paper [4] , they have given a nonexclusive model to the clients who aim to
compose parallel projects over the conveyed framework with CORBA middle ware [5].
They have dynamically created slave object to satisfy the master/slave parallel computing
paradigm by utilizing the idea of factory object.

A paper [6], the Design Pattern and Distributed Processes model use MIMD Processor
Architecture and Operating system which makes process and pass message for
correspondence. In their model, parallel program is represented by a directed graph. Every
node in the graph has a lot of input and output ports utilized for accepting and sending
messages individually. Output port of a node is associated with an input port of another
node.

At the point when a node sends a message to one of its output ports it reaches the input

ports of the connected node which can get this message. They have discovered the
abstraction of nodes and ports very significant in designing and utilizing design-pattern
based system. It has enabled the model to stay free of the particulars of the fundamental
message passing models, for example, PVM [7], Sockets [8] or MPI [9].

3. Calculation and distribution of load

Figure 1. Dynamic load balancing architecture

Above figure 1 demonstrates the architecture, in which the central node Nc ask for
current status of load to all nodes present in the network Wi. Each and every node
available in the network will respond with their individual load information to central
node. In view of this information central node takes choice whether to move the load or
not. In the wake of getting demand, nodes in the cluster prepared the information and
results back to the central node.

Given a parallel system with N processors, every processor i is estimated to have

compute load of Wi. For load balancing strategy we are not considering
correspondence cost. So the aggregate CPU load Li for every processor is spoken to by

Li = Wi
At first demand is sent from central node Nc to every single other nodes Ni present in

system to discover the present load Wi of every node Ni. The load is nothing but the

Processing

Nodes in Network

Central Node Nc

Load Balancer

Request for Current
Load Status

Transfer Nc Request

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 1480

number of processes CPU is executing at that time. At that point every node Ni present
in the network will respond with current load Wi it is taking care of.

Ventures for Workload Calculation and dissemination

1. Network checking for number of systems present in the network.
2. Each Node Ni gets load status ask for from Central node Nc.
3. Each node Ni responds with their load status to Nc
4. Each node load status Li is looked by Nc.
5. Compare load status Lc of Nc
6. Distribute equivalent load among all Ni where i=1,2,3,….n
7. Repeat the above strides for any new approaching load.

4. Program Slicing

The method for making cuts of the program dependent on some slicing criteria is
nothing but program slicing. Diverse methodologies on Program Slicing of various looks
into are there for various kinds of program. Our primary center is essentially making the
genuine utilization of slicing algorithm in the computing world.

The genuine utilization of slicing is just when the slices are autonomous in all regard
i.e. running freely by taking the essential information, reliability with respect to necessary
output. Traditional program slicing is done explicitly with slicing criteria. The Slicing
algorithm created in research work use slicing point as spine of the algorithm. A proposed
Slicing Algorithm is planned just for Iterative Program.

At slicing point, the logic of the program is gets repeat number of time till the
completion of the program. In this work we refer “For Loop” as the slicing point. The
Iterative Program contains redundancy of the similar logic number of times, and for the
completion of the reiteration, the system holds up till the test condition is finished.

Slicing Algorithm Steps

The Slicing Algorithm is depicted in the accompanying Steps:

1) Form CFG of the program.
2) Identify slicing point of the program.
3) Find initial and last value of the iteration in slicing point.
4) From Last Value of the iteration divide the slicing point in number of iteration.
5) In recently created slice, include the program beginning articulation and the statement
after the slicing point to the slice, so that the slice can be prepared for execution.

5. Results

Three systems in the network are considered for the experiment purpose. The
number of tasks is coming to central node Nc, are to be transferred for execution to
every one of the nodes, based on the threshold value. On the off chance that threshold
value is greater than that of the processes running on Nc, at that point load will be
transferred else it will be executed itself by Nc

Here we considered three numbers of systems present in the network. The task is
sliced and sent to number of nodes for partial execution.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 1481

Figure 2. Execution Time on Nc

Figure 3. Execution Time on Two Parallel Systems

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 1482

Figure 4. Execution Time on Three Parallel Systems

6. Conclusion

We have actualized execution of a task in parallel that can keep running for number of
iterations between nodes adequately by node’s load. The investigations demonstrate the
execution of the algorithm in parallel computing task reduces completion time. Load
balancing in parallel processing is accomplished through the slicing the iterative program
and running the slice on other nodes to enhance the execution of the system.

References

[1] A. Chhabra, G. Singh, S. S Waraich, B. Sidhu, and G. Kumar Z, "Qualitative Parametric Comparison

of Load Balancing Algorithms in Parallel and Distributed Computing Environment" Proc. World
Academy of Science, Engineering and Technology, Vol 16, pp. 39-42, Nov 16, 2006.

[2] Z. Yongzhi, Z. Yan, W. Ronghui, “Constructing and Performance Analysis of a Beowulf Parallel
Computing System Based on MPICH”, Computer Engineering and Application 2006.

[3] S. Nian, L. Guangmin, “Dynamic Load Balancing Algorithm for MPI Parallel Computing”,
International Conference on New Trends in Information and Service Science 2009.

[4] Chi-Chang Chen Meng-Xiang Chen, “A Generic Parallel Computing Model for the Distributed
Environment”, IEEE Seventh International Conference on Parallel and Distributed Computing,
Applications and Technologies, 2006,

[5] G. Brose, A. Vogel, and K. Duddy, ” Java Programming with CORBA”. 3rd Edition, John Wiley & Sons,

2001.
[6] S. Siu and A. Singh, “Design Patterns for Parallel Computing Using a Network of Processors”, Sixth

IEEE International Symposium on High Performance Distributed Computing, 1997.
[7] G. Geist and V. Sunderam, “Network-based concurrent computing on the PVM system”, Concurrency:

Practice and Experience, 4(4):29:3-311, 1992.
[8] S. Leffler, M. McKusick, M. Karels, and J. Quarterman, “The design and implementation of 4.3 BSD

UNIX Operating System”, Addison- Wesley Publishing Company, Inc., 1990.
[9] D. Walker, “The design of a standard message passing interface for distributed memory concurrent

computers”, Parallel Computing, 20(4):657-673, 1994.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No: 1483

