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ABSTRACT: 

A software quality assessment is a disciplined examination of the software processes used by an organization, 

based on a process model. Metamorphic testing is used to verify the functional correctness of software in the 

absence of an ideal oracle. The ability to automatically detect failures and anomalies using MRs becomes 

difficult task in the day to day developing area. In this paper, the machine learning algorithm is introduced to 

automatically detect failures and anomalies using MRs can also provide hints for the construction of run-time 

self-correction mechanisms. The Naive bayes classification algorithm is used to improve the detection failures 

and anomalies to improve the self correction in the search engine results.  The proposed technique acquires 

improved precision and recall when compared to conventional methods. 
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I. INTRODUCTION: 

In software testing, a test oracle is needed to determine whether the program under test exhibits an acceptable 

behavior. Typically, it is very costly for testers to obtain a suitable test oracle for the program under test [1]. For 

some programs (e.g., scientific programs), which Weyuker [2] refers to as \non-testable" programs, obtaining 

test oracles may be extremely difficult or even impossible. In such a circumstance, testers may be unable to 

decide whether the program outputs are correct for most given inputs. 

Metamorphic testing has been shown to be a simple yet effective technique in addressing the quality assurance 

of applications that do not have test oracles, i.e., for which it is difficult or impossible to know what the correct 

output should be for arbitrary input. In metamorphic testing, existing test case input is modified to produce new 

test cases in such a manner that, when given the new input, the application should produce an output that can be 

easily be computed based on the original output. 

The introduction of metamorphic testing can be traced back to a technical report by Chen et al. [5] published in 

1998. However, the use of identity relations to check program outputs can be found in earlier articles on testing 

of numerical programs [6], [7] and fault tolerance [8]. Since its introduction, the literature on metamorphic 

testing has flourished with numerous techniques, applications and assessment studies that have not been fully 

reviewed until now. Although some papers present overviews of metamorphic testing, they are usually the result 

of the authors’ own experience [9], [10], [11], [12], [13], review of selected articles [14], [15], [16] or surveys 
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on related testing topics [3]. At the time of writing this article, the only known survey on metamorphic testing is 

written in Chinese and was published in 20091 [17]. As a result, publications on metamorphic testing remain 

scattered in the literature, and this hinders the analysis of the state of the art and the identification of new 

research directions. 

In this paper, the naive bayes classification algorithm is introduced to automatically detect failures and 

anomalies using MRs can also provide hints for the construction of run-time self-correction mechanisms. The 

rest of this paper is organized as follows: Section 2 describes the related work. Section 3 briefly discussed about 

the proposed system. The experimental results are discussed in section 4 and section 5 concludes the paper. 

II. RELATED WORKS 

Metamorphic testing was introduced by Chen et al. [4] as a technique to alleviate the oracle problem. The basic 

idea is illustrated in Figure 1. For the software under test (SUT), the executions of a source test case (TC) and a 

follow-up TC are compared against some metamorphic relation (MR). In Figure 1, even if no oracle is available 

to verify each individual output, sin(x1) or sin(x2), the sine function can still be tested by comparing the pair of 

outputs against the given MR: sin(x1)=sin(x2). 

 

Fig. 1. Illustration of metamorphic testing 

MRs can be of various forms, such as equalities, inequalities, periodicity properties, convergence constraints, 

subsumption relationships, etc. They resemble the concept of program invariants [15] but important distinctions 

must be made. While an invariant has to hold for every possible program execution, an MR is a relation between 

some executions (e.g., a pair of source TC and follow-up TC executions in Figure 1). As a result, MRs are 

necessary properties of the intended program’s functionality: If an MR violation is detected, then metamorphic 

testing reveals the presence of defects in the SUT. 

One of the earliest case studies of applying metamorphic testing to scientifc software was performed by Chen et 

al. [7]. Their SUT was a numerical program implementing the alternating direction implicit method to solve the 

partial diferential equation (Laplace equation) with Dirichlet boundary conditions. Because one cannot fnd exact 

solutions to such numerical problems, an MR was developed to alleviate the oracle problem. The case study 

showed the efectiveness of the MR by detecting the subtle errors in the SUT that special TCs (e.g., symmetric 

boundary conditions in a square plate) failed to reveal. Building on the work by Chen et al. [7], metamorphic 
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testing has been applied to a variety of scientifc software systems, including casting simulation [9], ad-hoc 

network protocol simulators [8], open queuing network modeling [9], and Monte Carlo modeling for the 

simulation of photon propagation [10]. 

In summary, metamorphic testing has been applied to verify and validate scientifc software that produces 

complex output like complicated numerical simulations. Most approaches like [11] develop the MRs in a one-

shot manner, organize them in the same hierarchy, and analyze their executions separately. The study presented 

next motivates our novel way of hierarchically creating the MRs. 

III. PROPOSED METHODOLOGY 

Our approach is based on the concept of metamorphic testing, summarized below. To facilitate that approach, 

we first identify the metamorphic relations that a classification algorithm is expected to exhibit between sets of 

inputs and sets of outputs. We then utilize these relations to conduct our testing of the implementations of the 

algorithms under investigation. 

In this work, however, our approach focuses on the machine learning classifiers. According to the general 

anticipated behaviors of these algorithms, we define our MRs formally as follows. 

MR-0: Consistence with affine transformation 

The result should be the same if we apply the same arbitrary affine transformation function, f(x) = kx + b, (k ≠ 0) 

to the values of any subset of attributes for each sample in the training data set S and the test case ts. 

MR-1.1: Permutation of class labels 

Assume that we have a class-label permutation function Perm() to perform one-to-one mapping between a class 

label in the set of labels L to another label in L. If the source case result is li, applying the permutation function 

to the set of corresponding class labels C for the follow-up case, the result of the follow-up case should 

be Perm(li). 

MR-1.2: Permutation of the attribute 

If we permute the m attributes of all the samples and the test data, the output should remain unchanged. 

MR-2.1: Addition of uninformative attributes 

An uninformative attribute is one that is equally associated with each class label. For the source input, suppose 

we get the result ct = li for the test case ts. In the follow-up input, we add an uninformative attribute to each 

sample in S and respectively a new attribute in ts. The choice of the actual value to be added here is not 

important as this attribute is equally associated with the class labels. The output of the follow-up test case should 

still be li. 
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MR-2.2: Addition of informative attributes 

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we add an 

informative attribute to each sample in S and ts such that this attribute is strongly associated with class li and 

equally associated with all other classes. The output of the follow-up test case should still be li. 

MR-3.1: Consistence with re-prediction 

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we can 

append ts and ct to the end of S and C respectively. We call the new training dataset S’ and C’. We 

take S’, C’ and ts as the input of the follow-up case, and the output should still be li. 

MR-3.2: Additional training sample 

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we duplicate all 

samples in S with label li, as well as their associated labels in C. The output of the follow-up test case should 

still be li. 

MR-4.1: Addition of classes by duplicating samples 

For the source input, suppose we get the result ct = lifor the test case ts. In the follow-up input, we duplicate all 

samples in S and C that do not have label li and concatenate an arbitrary symbol “*” to the class labels of the 

duplicated samples. That is, if the original training sample set S is associated with class labels <A, B, 

C> and li is A, the set of classes in S in the follow-up input could be <A, B, C, B*, C*>. The output of the 

follow-up test case should still be li. Another derivative of this metamorphic relation is that duplicating all 

samples from any number of classes which do not have label li should not change the result of the output of the 

follow- up test case. 

MR-4.2: Addition of classes by re-labeling samples 

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we re-label some 

of the samples in S with labels other than li, through concatenating an arbitrary symbol “*” to their associated 

class labels in C. That is, if the original training set S is associated with class labels <A, B, B, B, C, C, C> 

and c0 is A, the set of classes in S in the follow-up input may become <A, B, B, B*, C, C*, C*>. The output of 

the follow-up test case should still be li. 

MR-5.1: Removal of classes 

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we remove one 

entire class of samples in S of which the label is not li. That is, if the original training sample set S is associated 

with class labels <A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A, A, 

B, B>. The output of the follow-up test case should still be li. 
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MR-5.2: Removal of samples 

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we remove part 

of some of the samples in S and C of which the label is not li. That is, if the original training set S is associated 

with class labels <A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A, A, 

B, C>. The output of the follow-up test case should still be li. 

Supervised machine learning classifiers consist of two phases. The first phase (called the training phase) 

analyzes the training data; the result of this analysis is a model that attempts to make generalizations about how 

the attributes relate to the label. In the second phase (called the testing phase), the model is applied to another, 

previously unseen data set (the testing data) where the labels are unknown. 

In the Naïve Bayes Classifier, for a training sample set S, suppose each sample has m attributes, <att0, att1, ..., 

attm−1>, and there are n classes in S, {l0, l1, ..., ln−1}. The value of the test case ts is <a0, a1, ..., am−1>. The label 

of ts is called lts, and is to be predicted by NBC. 

NBC computes the probability of lts to be of class lk, when each attribute value of ts is <a0, a1, ..., am−1>. NBC 

assumes that attributes are conditionally independent with one another given the class label, therefore we have 

the equation: 

 

After computing the probability for each li ∈ {l0, l1, ..., ln−1}, NBC assigns the label lk with the highest 

probability, as the label of test case ts. 

Generally NBC uses a normal distribution to compute P(aj | lts = lk). Thus NBC trains the training sample set to 

establish a distribution function for each element attj of vector <att0, att1, ..., attm−1> in each li ∈{l0, l1, ..., ln−1}, 

that is, for all samples with label li ∈ {l0, l1, ..., ln−1}, it calculates the mean value μ and mean square deviation σ 

of attj in all samples with li. Then a probability density function is constructed for a normal distribution with μ 

and σ. 

For test case ts with m attribute values <a0, a1, ..., am−1>, NBC computes the probability of P(aj | lts = lk)using a 

small interval δ to calculate the integral area. With the above formulae NBC can then compute the probability 

of lts belonging to each li and choose the label with the highest probability as the classification of ts. 
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IV. EXPERIMENTAL RESULTS 

At first, 500 English words were randomly selected from an English dictionary. These 500 words were regarded 

as the original queries, while the follow-up queries were the original query to which was added the domain 

names of the first five results of the original query. The experiment was done in google search engine.  

The precision and recall are the performance metrics used to evaluate our proposed method. The performance is 

evaluated using the keyword “Issack Newton”.  
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Figure 2: Precision and recall comparison 

Figure 2 shows the precision and recall comparison of metamorphic testing and modified metamorphic testing 

with supervised machine learning algorithm and proves that, the modification done the reasonable improvement 

in the precision and the recall values. 

V. CONCLUSION 

In this paper, the machine learning algorithm is proposed to automatically detect failures and anomalies using 

MRs can also provide hints for the construction of run-time self-correction mechanisms. Our contribution is a 

set of metamorphic relations for classification algorithms, as well as a technique that uses these relations to 

enable scientists to easily test and validate the machine learning components of their software; this technique is 

also applicable to problem-specific domains as well. 
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