
MACHINE LEARNING BASED METAMORPHIC

TESTING FOR SOFTWARE QUALITY ASSESSMENT

A.Josephine Prapulla
1
, Dr.L.Manjunatha Rao

2

1
Research scholar, Bharathiar University. Coimbatore.

2
Professor and Director Dr. B. R. Ambedkar institute of technology. Bengaluru.

ABSTRACT:

A software quality assessment is a disciplined examination of the software processes used by an organization,

based on a process model. Metamorphic testing is used to verify the functional correctness of software in the

absence of an ideal oracle. The ability to automatically detect failures and anomalies using MRs becomes

difficult task in the day to day developing area. In this paper, the machine learning algorithm is introduced to

automatically detect failures and anomalies using MRs can also provide hints for the construction of run-time

self-correction mechanisms. The Naive bayes classification algorithm is used to improve the detection failures

and anomalies to improve the self correction in the search engine results. The proposed technique acquires

improved precision and recall when compared to conventional methods.

Keywords: MT, MR, Search engine, Naive bayes, Supervised machine learning

I. INTRODUCTION:

In software testing, a test oracle is needed to determine whether the program under test exhibits an acceptable

behavior. Typically, it is very costly for testers to obtain a suitable test oracle for the program under test [1]. For

some programs (e.g., scientific programs), which Weyuker [2] refers to as \non-testable" programs, obtaining

test oracles may be extremely difficult or even impossible. In such a circumstance, testers may be unable to

decide whether the program outputs are correct for most given inputs.

Metamorphic testing has been shown to be a simple yet effective technique in addressing the quality assurance

of applications that do not have test oracles, i.e., for which it is difficult or impossible to know what the correct

output should be for arbitrary input. In metamorphic testing, existing test case input is modified to produce new

test cases in such a manner that, when given the new input, the application should produce an output that can be

easily be computed based on the original output.

The introduction of metamorphic testing can be traced back to a technical report by Chen et al. [5] published in

1998. However, the use of identity relations to check program outputs can be found in earlier articles on testing

of numerical programs [6], [7] and fault tolerance [8]. Since its introduction, the literature on metamorphic

testing has flourished with numerous techniques, applications and assessment studies that have not been fully

reviewed until now. Although some papers present overviews of metamorphic testing, they are usually the result

of the authors’ own experience [9], [10], [11], [12], [13], review of selected articles [14], [15], [16] or surveys

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1815

on related testing topics [3]. At the time of writing this article, the only known survey on metamorphic testing is

written in Chinese and was published in 20091 [17]. As a result, publications on metamorphic testing remain

scattered in the literature, and this hinders the analysis of the state of the art and the identification of new

research directions.

In this paper, the naive bayes classification algorithm is introduced to automatically detect failures and

anomalies using MRs can also provide hints for the construction of run-time self-correction mechanisms. The

rest of this paper is organized as follows: Section 2 describes the related work. Section 3 briefly discussed about

the proposed system. The experimental results are discussed in section 4 and section 5 concludes the paper.

II. RELATED WORKS

Metamorphic testing was introduced by Chen et al. [4] as a technique to alleviate the oracle problem. The basic

idea is illustrated in Figure 1. For the software under test (SUT), the executions of a source test case (TC) and a

follow-up TC are compared against some metamorphic relation (MR). In Figure 1, even if no oracle is available

to verify each individual output, sin(x1) or sin(x2), the sine function can still be tested by comparing the pair of

outputs against the given MR: sin(x1)=sin(x2).

Fig. 1. Illustration of metamorphic testing

MRs can be of various forms, such as equalities, inequalities, periodicity properties, convergence constraints,

subsumption relationships, etc. They resemble the concept of program invariants [15] but important distinctions

must be made. While an invariant has to hold for every possible program execution, an MR is a relation between

some executions (e.g., a pair of source TC and follow-up TC executions in Figure 1). As a result, MRs are

necessary properties of the intended program’s functionality: If an MR violation is detected, then metamorphic

testing reveals the presence of defects in the SUT.

One of the earliest case studies of applying metamorphic testing to scientifc software was performed by Chen et

al. [7]. Their SUT was a numerical program implementing the alternating direction implicit method to solve the

partial diferential equation (Laplace equation) with Dirichlet boundary conditions. Because one cannot fnd exact

solutions to such numerical problems, an MR was developed to alleviate the oracle problem. The case study

showed the efectiveness of the MR by detecting the subtle errors in the SUT that special TCs (e.g., symmetric

boundary conditions in a square plate) failed to reveal. Building on the work by Chen et al. [7], metamorphic

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1816

testing has been applied to a variety of scientifc software systems, including casting simulation [9], ad-hoc

network protocol simulators [8], open queuing network modeling [9], and Monte Carlo modeling for the

simulation of photon propagation [10].

In summary, metamorphic testing has been applied to verify and validate scientifc software that produces

complex output like complicated numerical simulations. Most approaches like [11] develop the MRs in a one-

shot manner, organize them in the same hierarchy, and analyze their executions separately. The study presented

next motivates our novel way of hierarchically creating the MRs.

III. PROPOSED METHODOLOGY

Our approach is based on the concept of metamorphic testing, summarized below. To facilitate that approach,

we first identify the metamorphic relations that a classification algorithm is expected to exhibit between sets of

inputs and sets of outputs. We then utilize these relations to conduct our testing of the implementations of the

algorithms under investigation.

In this work, however, our approach focuses on the machine learning classifiers. According to the general

anticipated behaviors of these algorithms, we define our MRs formally as follows.

MR-0: Consistence with affine transformation

The result should be the same if we apply the same arbitrary affine transformation function, f(x) = kx + b, (k ≠ 0)

to the values of any subset of attributes for each sample in the training data set S and the test case ts.

MR-1.1: Permutation of class labels

Assume that we have a class-label permutation function Perm() to perform one-to-one mapping between a class

label in the set of labels L to another label in L. If the source case result is li, applying the permutation function

to the set of corresponding class labels C for the follow-up case, the result of the follow-up case should

be Perm(li).

MR-1.2: Permutation of the attribute

If we permute the m attributes of all the samples and the test data, the output should remain unchanged.

MR-2.1: Addition of uninformative attributes

An uninformative attribute is one that is equally associated with each class label. For the source input, suppose

we get the result ct = li for the test case ts. In the follow-up input, we add an uninformative attribute to each

sample in S and respectively a new attribute in ts. The choice of the actual value to be added here is not

important as this attribute is equally associated with the class labels. The output of the follow-up test case should

still be li.

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1817

MR-2.2: Addition of informative attributes

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we add an

informative attribute to each sample in S and ts such that this attribute is strongly associated with class li and

equally associated with all other classes. The output of the follow-up test case should still be li.

MR-3.1: Consistence with re-prediction

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we can

append ts and ct to the end of S and C respectively. We call the new training dataset S’ and C’. We

take S’, C’ and ts as the input of the follow-up case, and the output should still be li.

MR-3.2: Additional training sample

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we duplicate all

samples in S with label li, as well as their associated labels in C. The output of the follow-up test case should

still be li.

MR-4.1: Addition of classes by duplicating samples

For the source input, suppose we get the result ct = lifor the test case ts. In the follow-up input, we duplicate all

samples in S and C that do not have label li and concatenate an arbitrary symbol “*” to the class labels of the

duplicated samples. That is, if the original training sample set S is associated with class labels <A, B,

C> and li is A, the set of classes in S in the follow-up input could be <A, B, C, B*, C*>. The output of the

follow-up test case should still be li. Another derivative of this metamorphic relation is that duplicating all

samples from any number of classes which do not have label li should not change the result of the output of the

follow- up test case.

MR-4.2: Addition of classes by re-labeling samples

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we re-label some

of the samples in S with labels other than li, through concatenating an arbitrary symbol “*” to their associated

class labels in C. That is, if the original training set S is associated with class labels <A, B, B, B, C, C, C>

and c0 is A, the set of classes in S in the follow-up input may become <A, B, B, B*, C, C*, C*>. The output of

the follow-up test case should still be li.

MR-5.1: Removal of classes

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we remove one

entire class of samples in S of which the label is not li. That is, if the original training sample set S is associated

with class labels <A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A, A,

B, B>. The output of the follow-up test case should still be li.

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1818

MR-5.2: Removal of samples

For the source input, suppose we get the result ct = li for the test case ts. In the follow-up input, we remove part

of some of the samples in S and C of which the label is not li. That is, if the original training set S is associated

with class labels <A, A, B, B, C, C> and li is A, the set of classes in S in the follow-up input may become <A, A,

B, C>. The output of the follow-up test case should still be li.

Supervised machine learning classifiers consist of two phases. The first phase (called the training phase)

analyzes the training data; the result of this analysis is a model that attempts to make generalizations about how

the attributes relate to the label. In the second phase (called the testing phase), the model is applied to another,

previously unseen data set (the testing data) where the labels are unknown.

In the Naïve Bayes Classifier, for a training sample set S, suppose each sample has m attributes, <att0, att1, ...,

attm−1>, and there are n classes in S, {l0, l1, ..., ln−1}. The value of the test case ts is <a0, a1, ..., am−1>. The label

of ts is called lts, and is to be predicted by NBC.

NBC computes the probability of lts to be of class lk, when each attribute value of ts is <a0, a1, ..., am−1>. NBC

assumes that attributes are conditionally independent with one another given the class label, therefore we have

the equation:

After computing the probability for each li ∈ {l0, l1, ..., ln−1}, NBC assigns the label lk with the highest

probability, as the label of test case ts.

Generally NBC uses a normal distribution to compute P(aj | lts = lk). Thus NBC trains the training sample set to

establish a distribution function for each element attj of vector <att0, att1, ..., attm−1> in each li ∈{l0, l1, ..., ln−1},

that is, for all samples with label li ∈ {l0, l1, ..., ln−1}, it calculates the mean value μ and mean square deviation σ

of attj in all samples with li. Then a probability density function is constructed for a normal distribution with μ

and σ.

For test case ts with m attribute values <a0, a1, ..., am−1>, NBC computes the probability of P(aj | lts = lk)using a

small interval δ to calculate the integral area. With the above formulae NBC can then compute the probability

of lts belonging to each li and choose the label with the highest probability as the classification of ts.

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1819

IV. EXPERIMENTAL RESULTS

At first, 500 English words were randomly selected from an English dictionary. These 500 words were regarded

as the original queries, while the follow-up queries were the original query to which was added the domain

names of the first five results of the original query. The experiment was done in google search engine.

The precision and recall are the performance metrics used to evaluate our proposed method. The performance is

evaluated using the keyword “Issack Newton”.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Methods

R
e
c
a
ll

Metamorphic testing

Naive bayes Classifier

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Methods

P
re

c
is

io
n

Metamorphic testing

Naive bayes Classifier

Figure 2: Precision and recall comparison

Figure 2 shows the precision and recall comparison of metamorphic testing and modified metamorphic testing

with supervised machine learning algorithm and proves that, the modification done the reasonable improvement

in the precision and the recall values.

V. CONCLUSION

In this paper, the machine learning algorithm is proposed to automatically detect failures and anomalies using

MRs can also provide hints for the construction of run-time self-correction mechanisms. Our contribution is a

set of metamorphic relations for classification algorithms, as well as a technique that uses these relations to

enable scientists to easily test and validate the machine learning components of their software; this technique is

also applicable to problem-specific domains as well.

REFERENCES

[1] M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A comprehensive survey of trends in oracles for

software testing. Technical Report CS-13-01, University of Sheeld, 2013.

[2] E. J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465{470, 1982.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle problem in software testing: A

survey,” Software Engineering, IEEE Transactions on, vol. 41, no. 5, pp. 507–525, May 2015.

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1820

[4] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: a new approach for generating next test

cases. Technical report, The Hong Kong University of Science and Technology, Hong Kong, China, 1998.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new approach for generating next test

cases,” Technical Report HKUST-CS98-01, Department of Computer Science, The Hong Kong University

of Science and Technology, Tech. Rep., 1998.

[6] W. J. Cody, Software Manual for the Elementary Functions. Upper Saddle River, NJ, USA: Prentice-Hall,

Inc., 1980.

[7] M. Blum, M. Luby, and R. Rubinfeld, “Self-testing/correcting with applications to numerical problems,”

Journal of Computer and System Sciences, vol. 47, no. 3, pp. 549 – 595, 1993. [Online]. Available:

http://www.sciencedirect.com/science/ article/pii/002200009390044W

[8] P. E. Ammann and J. C. Knight, “Data diversity: An approach to software fault tolerance,” IEEE

Transactions on Computers, vol. 37, no. 4, pp. 418–425, Apr. 1988. [Online].

Available:http://dx.doi.org/10.1109/12.2185

[9] T. Y. Chen, F.-C. Kuo, T. H. Tse, and Z. Q. Zhou, “Metamorphic testing and beyond,” in Eleventh Annual

International Workshop on Software Technology and Engineering Practice, 2003., Sept 2003, pp. 94–100.

[10] T. H. Tse, “Research directions on model-based metamorphic testing and verification,” in 29th Annual

International Computer Software and Applications Conference, 2005. COMPSAC 2005., vol. 1,July 2005,

pp. 332 Vol. 2–.

[11] T. Y. Chen, “Metamorphic testing: A simple approach to alleviate the oracle problem,” in Fifth IEEE

International Symposium on Service Oriented System Engineering (SOSE), 2010, June 2010, pp. 1–2.

[12] W. K. Chan and T. H. Tse, “Oracles are hardly attain’d, and hardly understood: Confessions of software

testing researchers,” in 13
th

 International Conference on Quality Software (QSIC), 2013, July 2013, pp.

245–252.

[13] T. Y. Chen, “Metamorphic testing: A simple method for alleviating the test oracle problem,” in

Proceedings of the 10
th

 International Workshop on Automation of Software Test, ser. AST ’15. Piscataway,

NJ, USA: IEEE Press, 2015, pp. 53–54. [Online].Available:

http://dl.acm.org/citation.cfm?id=2819261.2819278

[14] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “Metamorphic testing: Applications and integration

with other methods: Tutorial synopsis,” in 12th International Conference on Quality Software (QSIC),

2012, Aug 2012, pp. 285–288.

[15] Z. Hui and S. Huang, “Achievements and challenges of metamorphic testing,” in ourth World Congress on

Software Engineering (WCSE), 2013, Dec 2013, pp. 73–77.

[16] U. Kanewala and J. M. Bieman, “Techniques for testing scientific programs without an oracle,” in 5th

International Workshop on Software Engineering for Computational Science and Engineering (SECSE),

2013, May 2013, pp. 48–57.

[17] G. Dong, B. Xu, L. Chen, C. Nie, and L. Wang, “Survey of metamorphic testing,” Journal of Frontiers of

Computer Science and Technology, vol. 3, no. 2, pp. 130–143, 2009.

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:1821

