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Abstract— Over the years, different methods have been developed and improved upon to forecast load demands. These methods of load 
forecasting are classified into two categories: classical approaches and artificial intelligence (AI) based techniques. Classical approaches are 
based on various statistical modelling methods. These approaches forecast future values of the load by using a mathematical combination of 
previous values of the load and other variable such as weather data. This includes the use of regression exponential smoothing, Box-Jenkins, 
autoregressive integrated moving average (ARIMA) models and Kalman filters. Short-term load forecasting (STLF) aims towards prediction of 
electricity loads for a period of minutes, hours, days or weeks. Accurate load forecasting will lead to appropriate scheduling and planning with 
optimize energy cost. The time dependent factors, random factors, and weather factors have different effects on load forecasting patterns. The 
papers give comparative analysis based on Kalman Filter and NARX neural network model. The models are verified for summer and winter 
data. 
 
Keywords— Short-term load forecasting, Kalman filter, NARX Model 
 

I. INTRODUCTION 
In recent years, with the opening of electricity markets, electrical power system load forecasting plays an important role for 

electrical power operation. Accurate load forecast will lead to appropriate operation and planning for the power system, thus 
achieving a lower operating cost and higher reliability of electricity supply. Short-term load forecasting (STLF) of electric power 
is important in operation scheduling, economic dispatch, unit commitment, energy transactions and fuel purchasing [1, 2]. Short-
term load forecasting aims towards prediction of electricity loads for a period of minutes, hours, days or weeks. The quality of 
short-term load forecasts with lead time ranging from one hour to several days ahead has significant impact on the efficiency of 
any power utility [3]. In the developing countries like India the power sector is often unable to meet peak demands. It seems 
essential that the scheduling of generation is to be planned carefully since one has to work within stringent limits. Hence, suitable 
strategies are necessary for generation control and load management. 

II. FORECASTING MODELS 
Owing to the importance of STLF, research in this area in the last years has resulted in the development of numerous 

forecasting methods. These methods are mainly classified into two categories: classical approaches and artificial intelligence (AI) 
based techniques. Classical approaches are based on various statistical modeling methods. These approaches forecast future 
values of the load by using a mathematical combination of previous values of the load and other variable such as weather data. 
Classical STLF approaches use regression exponential smoothing, Box-Jenkins, autoregressive integrated moving average 
(ARIMA) models and Kalman filters. Recently several research groups have studied the use of artificial neural networks (ANNs) 
models and Fuzzy neural networks (FNNs) models for load forecasting [8]. With the development of AI in recent years, people 
become able to forecast using FNN and ANN with the back propagation method. Although the back propagation method has 
solved a number of practical problems, its poor convergence and Methoology speed can somewhat deter engineers. Meanwhile, a 
conventional ANN model sometimes can suffer from a sub-optimization problem [9, 10]. 

In this paper, a STLF procedure based on a Kalman filtering, ARIMA and ANN based models are illustrated in detail. The 
model is applied to different load conditions of hourly load shape. Corrections in the prediction, especially for the peak hours can 
be made by applying a simple method of error feedback. The forecasting results obtained are quite promising, thus demonstrating 
the good potentials on such a kind of electric load. Weather is one of the principal causes of load variations as it affects domestic 
load, public lighting, commercial loads etc. therefore, it is essential to choose relevant weather variables and model, their 
influence on power consumption. Principal weather variables found to affect the power consumption include temperature, cloud 
cover, visibility and precipitation. Hence the comparative analysis is performed based on summer and winter data. 
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III. KALMAN FILTER MODEL 

 Kalman filtering, also known as linear quadratic estimation (LQE), is an d that uses a series of measurements observed 
over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more 
accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each 
timeframe.  

The algorithm works in a two-step process. In the prediction step, the Kalman filter produces estimates of the current state 
variables, along with their uncertainties. Once the outcome of the next measurement (necessarily corrupted with some amount of 
error, including random noise) is observed, these estimates are updated using a weighted average, with more weight being given 
to estimates with higher certainty. The algorithm is recursive. It can run in real time, using only the present input measurements 
and the previously calculated state and its uncertainty matrix; no additional past information is required. 

In order to use the Kalman filter to estimate the internal state of a process given only a sequence of noisy observations, one must 
model the process in accordance with the framework of the Kalman filter. This means specifying the following matrices: 

 Fk, the state-transition model; 
 Hk, the observation model; 
 Qk, the covariance of the process noise; 
 Rk, the covariance of the observation noise; 
 and sometimes Bk, the control-input model, for each time-step, k, as described below. 

 
 The Kalman filter model assumes the true state at time k is evolved from the state at (k − 1) according to 

 
xk = Fkxk-1 + Bkuk + wk    (1) 
 

where 
 Fk is the state transition model which is applied to the previous state xk−1; 
 Bk is the control-input model which is applied to the control vector uk; 
 wk is the process noise which is assumed to be drawn from a zero mean multivariate normal 

distribution, with covariance, Qk:  wk͠    (0, Qk ) 
At time k an observation (or measurement) zk of the true state xk is made according to 
 

  zk = Hk xk  + vk   (2) 
 where 

 Hk is the observation model which maps the true state space into the observed space and 
 vk is the observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk:  :  vk͠    (0, 

Rk ) 
The initial state, and the noise vectors at each step {x0, w1, …, wk, v1 … vk} are all assumed to be mutually independent. 
 
ARIMA (p,q,d); Auto Regressive Integrated Moving Average produced by Elrazaz and Mazi (1989) is an extension of ARMA. It 
utilizes a difference operator to transform the non-stationary time series into a stationary one. While p is the number of auto-
regressive terms and q is the number of lagged forecast error, d is the number of non-seasonal differences. If differencing is 
eliminated (i.e. d=0), then ARIMA model transform into an ARMA model.  Consider a time series xt, and then the first order 
differencing is defined as: 

      (3)         
We can use L to express differencing: 

   (4) 

Thus ARIMA (p,q,d) is defined as: 
   (5) 

 
     (6) 
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IV. ANN NARX MODEL 
 The NARX is a recurrent time delay network (TDNN) with a delay line as shown in Figure 3 on the inputs and a 
feedback connection from the output to the inputs. A delay line is a lag of time in the inputs. The inputs like in the statistical 
VARMA model are a mixture of past values of the same time series, and past values of another independent time series. A NARX 
as shown in figure 3 network can be mathematically represented as 
 

       (7) 
 

Where denote, respectively, the input and the output of the model at discrete time t. The parameters � and � are 

memory delays, with � < �. The function f is a non-linear function of the input and output of the model. The predicted output  

is regressed on the input values (exogenous) and the output value ��−�. Figure 1 shows the architecture of a NARX network 
with two hidden layer. This can be generalized to multiple inputs (N) and outputs (M). 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 1: Typical architecture of NARX network  

 For learning purposes, a dynamic back-propagation algorithm is required to compute the gradients, which is more 

computationally intensive than static back-propagation and takes more time. In addition, the error surfaces for dynamic networks 

can be more complex than those for static networks. Training is more likely to be trapped in local minima. In general, in function 

approximation problems, for networks that contain up to a few hundred weights, will have the fastest convergence. This 

advantage is especially noticeable if very accurate training is required. However, as the number of weights in the network 

increases, the advantage of this algorithm decreases. 

 The selected training method for our work uses the advantage of availability at the training time of the true real output 

set. It is possible to use the true output instead of the estimated output to train the network which has the feedback connections 

decoupled. The decoupled network has a common feed forward architecture which can be trained with classical static back-

propagation algorithm. In addition, during training, the inputs to the feed forward network are just the real/true ones – not 

estimated ones, and the training process will be more accurate. 

 

V. METHOD OF IMPLEMENTATION 
Following steps are implemented for Kalman Filtering Prediction Model: 

 Run Kalman filter over the residual sequence with model in order to produce the filtering estimate of AR weight vectors. 
Predict the weights over the missing parts. 

 Run Kalman smoother over the Kalman filter estimation result above, which results in smoothed MAP estimate of the 
weight time series including the missing parts. 

 Run Kalman filter over the residual sequence with model in order to produce filtering estimate of the short term 
periodicity. The periodicity is also predicted over the missing parts. 

 Run Kalman smoother  over the Kalman filter estimation result above, which results in smoothed MAP estimate of the 
periodicity time series including the missing parts. 

Following steps are used for implementation of model: 
 The old data with its time stamping is firstly pre-processed and prepared in order to get processed in the NARX neural 

model. 
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 All the pre-processed data is now fed to the NARX neural network with 10 hidden layers and Levenberg-Marquardt as 
the training function with MSE as the performance evaluating parameter. 

 After the training the regression of around 0.97 is achieved of the training set and 0.95 of the overall system 
 For the prediction of the data after the training the closed loop system is prepared in the next stage and then a value 

ahead of the previous value is predicted every time the simulation executed model shown in Fig 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2        NARX Predictor model 

 

VI. ANALYSIS OF RESULTS 
 For analysis of both methods following data of a 33kV feeder in Khalapur Section of Maharashtra was considered. The 

data has been collected for a period of six month of April 2015 and December 2015  

TABLE I             PERFORMANCE ERROR  

Algorithm 
Performance error 

Winter Summer 

Kalman 1.726 2.57 

Narx 0.059 0.066 

   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 3    Prediction Graph with Kalman Filter for summer and winter load 
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Fig. 4    Prediction error with Kalman Filter for summer and winter load 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig.5   NARX neural network performance graph summer load 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.6   NARX neural network time response graph for summer load 
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Fig.7   NARX neural network performance graph winter load 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8    NARX neural network time response graph for winter load 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9    Comparison graph of summer and winter data 
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VII. CONCLUSION 
 
The paper has presented an application of a Kalman predictor and NRX model to the Short-Term Forecasting of the load 

shape of 33kV Feeder data. The basic model, main procedure and designing features are illustrated in detail. The obtained results 
show that the proposed architecture can be promising for the achieved forecasting accuracy. Furthermore, the Kalman filtering 
based approach allows very interesting possibilities in terms of integration and modification of both parameters and input data. 
Further improvements are expected from an extensive application to electric load data of further years jointly with the integration 
of data base with meteorological data. 
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