

A Novel Approach for Cohesion Measurement to Improve

the Quality of Object Oriented System

1N.Rajkumar & 2C.Viji

1Associate Professor, Department of Computer Science and Engineering, SVS College of Engineering,

Coimbatore, Tamil Nadu, India.

2Assistant Professor, Department of Electronics & Communication Engineering, SVS College of Engineering,

Coimbatore, Tamil Nadu, India.

Email: 1nrajkumar84@gmail.com, 2vijisvs2012@gmail.com

Abstract—software quality measurements have directed to extensive research into software metrics and the development of
software metric tools. Develop components which are reusable is a best practice in industry standard. To develop reusable
components reduce the relation between each component as possible. Hence, to preserve high quality software, developers need to
maintain low-coupled and highly cohesive design. Coupling and cohesion metrics lack proper and standardized definitions and
thus for each metric there is more than one clarification. This paper introduces our view of measurement of cohesion for Java
projects. High cohesion is desirable property in software systems to achieve reusability and maintainability. In this paper we are
measures for cohesion in Object-Oriented (OO) software reflect particular interpretations of cohesion and capture different aspects
of it. In existing approaches the cohesion is calculate from the structural information such as method attributes and references. We
are calculating the unstructured information from the source code such as comments and identifiers. Unstructured information is
embedded in the source code. To retrieve the unstructured information from the source code Latent Semantic Indexing is used. A
large case study on three open source software systems is presented which compares the new measure with a broad set of existing
metrics and uses them to construct models that predict software faults.

Keywords—cohesion, textual coherence, fault prediction, Latent Semantic Indexing, Software Quality.

I. INTRODUCTION
SOFTWARE modularization, Object-Oriented (OO) decomposition in particular, is an approach for improving the
organization and comprehension of source code. In order to understand OO software, software engineers need to create a
well-connected representation of the classes that make up the system. Each class must be understood individually and, then,
relationships among classes as well. One of the goals of the OO analysis and design is to create a system where classes have
high cohesion and there is low coupling among them. These class properties facilitate comprehension, testing, reusability,
maintainability, etc. Software cohesion can be defined as a measure of the degree to which elements of a module belong
together. Cohesion is also regarded from a conceptual point of view. In this view, a cohesive module is a crisp abstraction of
a concept or feature from the problem domain, usually described in the requirements or specifications. Such definitions,
although very intuitive, are quite vague and make cohesion measurement a difficult task, leaving too much room for
interpretation. In OO software systems, cohesion is usually measured at the class level and many different OO cohesion
metrics have been proposed which try capturing different aspects of cohesion or reflect a particular interpretation of
cohesion. Proposals of measures and metrics for cohesion abound in the literature as software cohesion metrics proved to be
useful in different tasks, including the assessment of design quality, productivity, design, and reuse effort, prediction of
software quality, fault prediction modularization of software and identification of reusable of components. Most approaches
to cohesion measurement have automation as one of their goals as it is impractical to manually measure the cohesion of
classes in large systems. The tradeoff is that such measures deal with information that can be automatically extracted from
software and analyzed by automated tools and ignore less structured but rich information from the software (for example,
textual information). Cohesion is usually measured on structural information extracted solely from the source code (for
example, attribute references in methods and method calls) that captures the degree to which the elements of a class belong
together from a structural point of view. These measures give information about the way a class is built and how its
instances work together to address the goals of their design. The principle behind this class of metrics is to measure the
coupling between the methods of a class. Thus, they give no clues as to whether the class is cohesive from a conceptual
point of view (for example, whether a class implements one or more domain concepts) nor do they give an indication about
the readability and comprehensibility of the source code. Although other types of metrics were proposed by researchers to
capture different aspects of cohesion, only a few metrics address the conceptual and textual aspects of cohesion. We propose
a new measure for class cohesion, named the Conceptual Cohesion of Classes (C3), which captures the conceptual aspects
of class cohesion, as it measures how strongly the methods of a class relate to each other conceptually.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1704

The conceptual relation between methods is based on the principle of textual coherence. We interpret the implementation of
methods as elements of discourse. There are many aspects of a discourse that contribute to coherence, including co
reference, causal relationships, connectives, and signals. The source code is far from a natural language and many aspects of
natural language discourse do not exist in the source code or need to be redefined. The rules of discourse are also different
from the natural language.C3 is based on the analysis of textual information in the source code, expressed in comments and
identifiers. Once again, this part of the source code, although closer to natural language, is still different from it. Thus, using
classic natural language processing methods, such as propositional analysis, is impractical or unfeasible. Hence, we use an
Information Retrieval (IR) technique, namely, Latent Semantic Indexing (LSI), to extract, represent, and analyze the textual
information from the source code. Our measure of cohesion can be interpreted as a measure of the textual coherence of a
class within the context of the entire system. Cohesion ultimately affects the comprehensibility of source code. For the
source code to be easy to understand, it has to have a clear implementation logic (that is, design) and it has to be easy to read
(that is, good language use). These two properties are captured by the structural and conceptual cohesion metrics,
respectively. Hence, we use an Information Retrieval (IR) technique, namely, Latent Semantic Indexing (LSI), to extract,
represent, and analyse the textual information from the source code and java reflection for retrieving structural relationship. Our
measure of cohesion can be interpreted as a measure of the textual coherence of a class within the context of the entire system.
Cohesion ultimately affects the comprehensibility of source code.

II. RELATED WORK: COHESION MEASUREMENT IN OO SYSTEMS
There are several approaches to cohesion measurement in OO systems. Many of the existing metrics are adapted from similar
cohesion measures for non-OO systems, while some of the metrics are specific to OO software. Based on the fundamental
information used to measure the cohesion of a class, one can distinguish structural metrics [8], [11], [20], slice-based metrics,
semantic metrics information entropy-based metrics [1], metrics based on data mining, and metrics for specific types of
applications like aspect-oriented, knowledge-based, and distributed systems. The class of structural metrics is the most
investigated category of cohesion metrics and includes lack of cohesion in methods.

ICH (information-flow-based cohesion), LCOM1, LCOM3, LCOM4, LCOM5, Co (connectivity), TCC (tight class cohesion) [8],

LCC (loose class cohesion) [8], NHD (normalized Hamming distance), etc. Cohesion is dependents on the number of
methods pairs that share parameter or methods. The structural metrics are based on relationships among methods and
variables. A broad overview of graph theory-based cohesion metrics. Somewhat different in this class of metrics are LCOM5
and Cohesion, which consider that cohesion is depends on number of instance variables in a class that shares the properties
with in the class defined a combined framework for cohesion measurement in OO systems [11] which organizes and
deliberates all of these metrics. A small set of cohesion metrics was proposed for specific types of applications. From a
measuring methodology point of view, two other cohesion metrics are of interest here since they are also based on an IR
approach. However, IR methods are used differently there than in our approach proposed a composite cohesion
metric which measures the strength of information i n a module. This measure is vector based representation and refers
the frequencies of occurrences of data type in a module. The approach measures the cohesion of individual subprograms
based on the relationships between each other in this vector space. A file-level cohesion metric based on type of information that
we are using for our proposed metrics here. The developer of a software system must consider a class as a set of task that
estimated the concept from the problem domain implemented by the class as different set of attributes, methods
communications. Information that contributes traces about domain c on c e p t s i s e m b e d d e d in t h e s o u r c e co d e
such a s comments and identifiers.

III. AN INFORMATION RETRIEVAL APPROACH TO CLASS COHESION MEASUREMENT
Developers are attempts to control complexity, High cohesion and low coupling among classes are design principles
directed to reducing the system complexity. We are trying to measure in our approach. The source code of a software system
contains unstructured and structured information. The structured informations are parsed, while the unstructured
information such as comments and identifiers is defined for understanding purpose, it won’t executed. Our approach is
based on the unstructured information as well as structured information which is embedded in the source code. We use
LSI, it is an advanced IR method. We have broad experience in using LSI for other software engineering problems like
concept and feature location, traceability link recovery between source code and documentation, identification of abstract data
types in legacy source code and clone detection.

A. OVERVIEW OF LATENT SEMANTIC INDEXING
LSI is a corpus-based statistical method for inducing and representing aspects of the meanings of words and passages (of the natural
language) reflective of their usage in large bodies of text. LSI is based on a vector space model (VSM) as it generates a real-valued
vector description for documents of text. Results have shown that LSI captures significant portions of the meaning not only of individual
words but also of whole passages, such as sentences, paragraphs, and short essays. The central concept of LSI is that the information
about the contexts in which a particular word appears or does not appear provides a set of mutual constraints that determines the
similarity of meaning of sets of words to each other. LSI was originally developed in the context of IR as a way of overcoming
problems with polysemy and synonymy that occurred with VSM approaches. Some words appear in the same contexts and an
important part of word usage patterns is blurred by accidental and inessential information.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1705

The method used by LSI to capture the essential semantic information is dimension reduction, selecting the most important dimensions
from a co-occurrence matrix (words by context) decomposed using singular value decomposition (SVD). As a result, LSI offers a way
of assessing semantic similarity between any two samples of text in an automatic unsupervised way. LSI relies on an SVD of a matrix
(word _ context) derived from a corpus of natural text that pertains to knowledge in the particular domain of interest. According to the
mathematical formulation of LSI, the term combinations that occur less frequently in the given document collection tend to be precluded
from the LSI subspace. LSI does “noise reduction,” as less frequently co-occurring terms are less mutually related and, therefore, less
sensible. Similarly, the most frequent terms are also eliminated from the analysis. The formalism behind SVD is rather complex and too
lengthy to be presented here.

Once the documents are represented in the LSI subspace, the user can compute similarity measures between documents by the cosine
between their corresponding vectors or by their length. These measures can be used for clustering similar documents together to identify
“concepts” and “topics” in the corpus. This type of usage is typical for text analysis tasks.

B. MEASURING TEXT COHERENCE WITH LATENT SEMANTIC INDEXING
There are many aspects that contribute to coherence, including co reference, causal relationships, connectives, and signals.
LSI can be applied as an automated method that produces coherence predictions similar to propositional modelling.
LSI to make coherence predictions is to compare some unit of text to an adjoining unit of text in order to determine the
degree to which the two are semantically related. These units could be sentences, paragraphs, individual words, or even entire
program. Coherence predictions have typically been performed in all level in which a set of propositions all contained within
the working memory are compared or connected to each other. For an LSI-based coherence analysis, using sentences as the
basic unit of text appears to be an appropriate corresponding level that can be easily parsed by automated methods. Sentences
serve as a good level in that they represent a small set of textual to measure the coherence of a text, LSI is used to compute the
similarities between consecutive sentences in the text. High similarity between two consecutive sentences indicates that the two
sentences are related, while low similarity indicates a break in the topic. The overall coherence of a text is measured as the
average of all similarity measures between successive sentences.

C. FROM TEXTUAL COHERENCE TO SOFTWARE COHESION
We adapt LSI-based coherence measurement mechanism to measure cohesion in OO system. One issue is the definition of
documents in the corpus. For a natural language, sentences, paragraphs, and even sections are used as units of text to be
indexed. Based on our previous experience, we consider methods as elements of the source code that can be units for
indexing. Thus, the implementation of each method is converted to a document in the corpus to be indexed by LSI.
Another issue of interest lies in the extraction of relevant information from the source code. We extract all identifiers and
comments from the source code. In software, we interpret a cohesive class as implementing one concept from the software domain.
With that in mind, each method of the class will refer to some aspect related to the implemented concept. Hence, methods
should be related to each other conceptually. We developed a tool IR-based Conceptual Cohesion Class Measurement,
which supports this methodology and automatically computes C3 for any class in a given software system. The following steps
are necessary to compute the C3 metric.

1. Corpus creation.
The source code is pre-processed and parsed to produce a text corpus. Comments and identifiers from each method are
extracted and processed. A document in the corpus is created for each method in every class.
2. Corpus indexing
LSI is used to index the corpus and create an equivalent semantic space.
3. Computing conceptual similarities.
Conceptual similarities are computed between each pair of methods.
4. Computing C3.
Our source code parser component is based on the Java Model. We use the cosine between vectors in the LSI space
to compute conceptual relations.

D. THE CONCEPTUAL COHESION OF CLASSES

In order to define and compute the C3 metric,
wC3=Mk*Mj /[Mk]2*[Mj]2
K=1, 2, 3……n; n: up to n comments
j=2, 3…..n; n: up to n comments

Definition 1
(CONCEPTUAL SIMILARITY BETWEEN METHODS-(CSM)) .
Fo r ever y clas s c i 2 C, all o f the ed ge s in E i ar e weighted. For each edge (mk ;mj) € Ei, we define the weight of

that edge CSM(mk ;mj) as the conceptual similarity between the methods mk and mj The conceptual similarity
between two methods mk and mj, that is, CSM(mk ;mj), is computed as the cosine between the vector s corresponding to

mk and mj in the semantic space constructed by the IR method.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1706

CSM (mk, mj) = vmkt vmj / |vmk|2 |vmj|2

Where vmk and vmj are the vector s correspo nding to the mk; mj 2 M (Ci) methods, T denotes the transpose,

and vmkj 2 is the length of the vector. Fo r each class c 2 C, we have a maximu m o f N = C2 distinct edges

between different nodes, where n = |Mc)|. W ith this system r epresentatio n , we define a set of measures that
approximate the cohesion of a class in an OO so ft war e s yste m b y measuring the degree to whic h the methods in a
class are related conceptually.

Definition 2
(AVERAGE CONCEPTUAL SIMILARITY OF METHODS IN A CLASS (ACSM)).
T he ACSM c € C i s
ACSM(c) = 1/N x ∑CSM (mi ,mj)
Where (mi; mj) € E, i ≠ j, mi , mj€ M(c), and N is the
number of distinct edges in G, as defined in Definition 1.

Table: 1 Conceptual Similarity between the Methods in the example Class

C3(Example) = 0:913.

Definition 3 (c3).
For a class c € C, the conceptual cohesion of, C3(c) is defined as follows
C3(c) = {ACSM(c), if ACSM(c)>0,
Based on the above definitions, C3 (c) € [0 , 1] V c € C. If a class c 2 C is cohesive, then C3(c) should be closer to
one, meaning that all methods in the class are strongly related conceptually with each other (that is, the CSM for each
pair of methods is close to one).

Java Reflection
Java Reflection is quite powerful and can be very useful. Java Reflection makes it possible to inspect classes, interfaces,
fields and methods at runtime, without knowing the names of the classes, methods etc. at compile time. It is also possible to
instantiate new objects, invoke methods and get/set field values using reflection.
Lcom5
lcom=((((1/a)*Mu)-m)/1-m);
Mu-count for fields ,
m-methods length, a-fields length,
lcom5=Math.sqrt(lcom*lcom);

IV Cohesion measuring Framework

Fig:1 Data Flow Diagram
Our proposed system describes LCOM5 and C3 measure in more detail. First we develop the LCOM5 formula and find out
the C3 measure and compare with structure and unstructured data. If the result is equal to one means, the class is less
cohesive according to the structured information. Then we are going to retrieve the index terms based on that comments
which are present in all the methods. Comments are useful information according to the software engineer.

Valuable
comments

Methods

Java
Program

Collecting the
structured information Apply the Lcom5

formula

Collecting the
Unstructured
information

Finding the Lsi indexing and
applied the vector calculation

Comparison

Variables

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1707

In concept oriented analysis we are taking the comments. Based on the comments we are going to measure the class is
cohesive or not.

Step-1:In this Phase system retrieve structured information like identifiers, (Example Variables).Invocation of declared
methods and declared constructors using Java Reflection and it retrieve valid comments.
Step -2: In this Phase system search the declared variables among all the classes. Because the main theme of the declaring
class variable is, it should be used in all methods. So that the declared variables are found among all the methods.
Step -3: In this Phase system apply the LCOM5 (Lack of cohesion in methods) formula. If the result is equal to one means,
the class is less cohesive according to the structured information.
Step -4: Here we are going to retrieve the index terms based on that comments which are present in all the methods.
Comments are useful information according to the software engineer. In concept oriented analysis we are taking the
comments. Based on the comments we are going to measure the class is cohesive or not.
Step -5: In this Phase system examine the index terms among the comments which are present in all the comments.
Step -6: In this Phase system apply the conceptual similarity formula. Based on the result we can say the class is cohesive or
less cohesive according to concept oriented.
Step -7:In this Phase we are going to compare the two results. Based on the results we can say that cohesion according to
structure oriented and unstructured oriented.

IV. CONCLUSION & FUTURE WORK
In conclusion, the approach developed in this paper provides a way to measure metrics for cohesion at class level. The
approach is developed into code only for Java projects. In future, we aim to develop the product for other common
languages like C#,C++ etc. Also, computation of cohesion at higher levels, package level will be done to show how
modules of projects are dependent on each other. The concepts of polymorphism will be taken into consideration for
future. Given our results that show that C3 and some structural metrics complement each other at least for fault prediction, more
insights i n t o the combination of conceptual and structural metrics for solving other problems are required and planned.
Specifically, we intend to address crosscutting concerns, which affect the cohesion of classes. We are planning user
studies to test whether C3 may reflect the perception of the programmers on class cohesion. Finally, we plan to test this
approach on several releases of a system such that the models are built on a given release and faults are predicted for the next
release of the system. This information can be used to measure the cohesion of software. To e x t r a c t this i n f o r m a t i o n
for cohesion measurement, Latent Semantic Indexing can be used in a manner similar to measuring the coherence of
natural language texts. This paper defines the conceptual cohesion of classes, which captures new and complementary
dimensions of cohesion compared to a host of existing structural metrics. Principal component analysis of measurement
results on three open source software systems statistically supports this fact. Highly cohesive classes need to have a
design that ensures a strong coupling among its methods and a coherent internal description.

REFERENCES:
[1] E.B. Allen, T.M. Khoshgoftaar, and Y. Chen, "Measuring Coupling and Cohesion of Software Modules: An
Information-Theory Approach,” Proc. Seventh IEEE Int’l Software Metrics Symp. pp. 124-134, Apr. 2001.
[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Identifying the Starting Impact Set of a Maintenance and
Reengineering,” Proc. Fourth European Conf. Software Maintenance, pp. 227-230, 2000.
[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering Traceability Links between Code and
Documentation,” IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970-983, Oct. 2002.
[4] E. Arisholm, L.C. Briand, and A. Foyen, “Dynamic Coupling Measurement for Object-Oriented Software,” IEEE
Trans. Software Eng., vol. 30, no. 8, pp. 491-506, Aug. 2004.
[5] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object-Oriented Design Quality Assessment,” IEEE Trans.
Software Eng., vol. 28, no. 1, pp. 4-17, Jan. 2002.
[6] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-Oriented Design Metrics as Quality
Indicators,”IEEE Trans. Software Eng., vol. 22, no. 10, Oct. 1996.
[7] M.W. Berry, “Large Scale Singular Value Computations,” Int’l J. Supercomputer Applications, vol. 6, pp. 13 -
49,1992.
[8] J. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object- Oriented System,” software Reusability, Apr. 1995.
[9] L. Briand, W. Melo, and J. Wust, “Assessing the Applicability of Fault-Proneness Models Across Object-Oriented
Software Projects,” IEEE Trans. Software Eng., vol. 28, no. 7, pp. 706-720, July 2002.
[10] L.C. Briand, J.W. Daly, V. Porter, and J. Wu¨ st, “A Comprehensive Empirical Validation of Design Measures for
Object-Oriented Systems,” Proc. Fifth IEEE Int’l Software Metrics Symp., pp. 43-53, Nov. 1998.
[11] L.C. Briand, J.W. Daly, and J. Wu¨ st, “A Unified Framework for Cohesion Measurement in Object-Oriented
Systems,” Empirical Software Eng., vol. 3, no. 1, pp. 65-117, 1998.
[12] L.C. Briand, S. Morasca, and V.R. Basili, “Property-Based Software Engineering Measurements,” IEEE
Trans.Software Eng., vol. 22, no. 1, pp. 68-85, Jan. 1996.
[13] L.C. Briand, J. Wu¨ st, J.W. Daly, and V.D. Porter, “Exploring the Relationship between Design Measures and
Software Quality in Object-Oriented Systems,” J. System and Software, vol. 51, no. 3, pp. 245-273, May 2000.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1708

[14] F. Brito e Abreu and M. Goulao, “Coupling and Cohesion as Modularization Drivers: Are We Being Over -
Persuaded,” Proc. Fifth European Conf. Software Maintenance and Reeng., pp. 47-57, 2001.
[15] H.S. Chae, Y.R. Kwon, and D.H. Bae, “A Cohesion Measure for Object-Oriented Classes,” Software: Practice and
Experience, vol. 30, pp. 1405-1431, 2000.
[16] H.S. Chae, Y.R. Kwon, and D.H. Bae, “Improving Cohesion Metrics for Classes by Considering Dependent
Instance Variables,”IEEE Trans. Software Eng., vol. 30, no. 11, pp. 826-832, Nov.2004.
[17] Z. Chen, Y. Zhou, B. Xu, J. Zhao, and H. Yang, “A Novel Approach to Measuring Class Cohesion Based on
Dependence Analysis,” Proc. 18th IEEE Int’l Conf. Software Maintenance, pp. 377-384, 2002.
[18] S. Chidamber, D. Darcy, and C. Kemmerer, “Managerial Use of Metrics for Object-Oriented Software: An
Exploratory Analysis,” IEEE Trans. Software Eng., vol. 24, no. 8, pp. 629-639, Aug. 1998.
[19] S.R. Chidamber and C.F. Kemmerer, “Towards a Metrics Suite for Object-Oriented Design,” Proc. Sixth ACM
Conf. Object-Oriented Programming, Systems, Languages and Applications, pp. 197-211, 1991.
[20] S.R. Chidamber and C.F. Kemmerer, “A Metrics Suite for Object- Oriented Design,” IEEE Trans. Software Eng., vol.
20, no. 6, pp. 476- 493, June 1994.

International Journal of Management, Technology And Engineering

Volume 8, Issue X, OCTOBER/2018

ISSN NO : 2249-7455

Page No:1709

