
Evaluating Software Metrics for detecting

code clones from potential clones

Sandeep Bal#1, Sumesh Sood*2

#Research Scholar, Dept of RIC, IKG-PTU, Kapurthala, Punjab, India
1sandeep.bal84@gmail.com

*Asst. Prof., Department of Computer Applications,

IKG-PTU Campus, Dinanagar, Punjab, India
2Sumesh64@gmail.com

Abstract: Software metrics give the numerical values of the characteristics of software or units of software. The

clone detection literature contains a large number of metrics which helps in measuring the functions as software
units. It is the choice of the researcher to finalize any set of metrics in order to conclude whether potential clones

are actual clones or not. This paper contains one such metrics based clone detection analysis which takes a set of

metrics for the given software. The metrics are calculated using a tool named UnderstandTM and the results are

passed to another web based application specifically designed to find the percentage of similarities between two

sets of coding between different releases/versions of software.

Keywords: metrics, potential clones, open source software, versions of software.

I. Introduction

Software evolution is the sequence of

changes to a software system over its

lifetime; it encompasses both development

and maintenance [1].

Software metrics capture different aspects

of software complexity. This paper

evaluates software metrics and presents

their comparison over different releases of

the same software. The impact of their

change on the health of the software over

its evolution is studied. Information gained

from metrics can be used in the

management and control of the

development process in order to improve

results.

In this paper an Open Source Software

namely NALCG (Not another Lousy

Chess Game) has been selected. Its 8

releases are hosted on GitHub [2]. It is

tested using Test-driven development

(TDD) process that relies on the repetition

of a very short development cycle: first the

developer writes an (initially failing)

automated test case that defines a desired

improvement or new function, and then

produces the minimum amount of code to

pass that test, and finally refactors the new

code to acceptable standards [3].

UnderstandTM [4] is a Static Code Analysis

tool aiming to achieve complete code

navigation, control flow graph generation,

Metrics generation, code comparison,

checking on the adherence of a code to

some specific coding standards like

MISRA and code reengineering for an

array of programming languages like C,

C++, Java, Jovial, Pascal, ADA, .NET and

more. It is a tool from “Scientific Tools

Inc.” and based out of St. George, Utah,

US. This tool has been used since long in

leading automotive, aerospace, defence

and loads of other critical industries for

understanding large legacy codes and take

up Static Code Analysis on them.

UnderstandTM as a tool has also a well

developed command line interface which

allows this tool to be integrated with any

of the existing tool chain that the software

companies normally use. Since the

commencement of the company (Scientific

Tools Inc.) in 1996, it has been used by

more than 200 companies worldwide to

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:215

understand their codes and development

further on them.

Section II of the paper shows the study of

the versions of the software used in the

study. Section III contains the names of

selected metrics in order to perform the

comparative study across versions. The

paper concludes in section IV with the

conclusion.

II. Versions of NALCG

An Open Source Software [5] namely

NALCG (Not another Lousy Chess Game)

has been selected and Total 8 versions of

this [6] are available till now:

1) Test release: Initially released

version of the software:

2) Version 0.5

3) Version 0.7

4) Version 0.9

5) Version 0.9.7 : Pre release before

demo

6) Version 1.0: First full release

version

7) Version 1.0.0rc1: Offline version

of the gaming software

8) Version 1.5rc1: Final version

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:216

Software development is a dynamic

process where we need to keep all the

associated metrics in check otherwise, the

software shape and complexity might

spiral out of control [7]. As the study of

dynamical systems have demonstrated, and

as reflected in this study, where one

parameter left unchecked led to an increase

in overall complexity, we cannot

completely control complexity. What we

would want to do is ensure that as it scales

up in size (and complexity), it stays

manageable, accessible and clean. And

keeping gauge of metrics will play a major

role in helping us ensure that.

III. Metrics & their comparison

The following table gives the name, detail

of each metric and number assigned to

each metric which is used in the approach

to refer to these metrics.

1. CountLine

2. Cyclomatic

3. CountDeclClass

4. CountDeclFunction

5. CountDeclMethod

6. CountInput

7. CountOutput

8. CountPath

9. CountStmtDecl

10. CountStmtExe

11. PercentLackOfCohesion

Thus a total of eleven metrics are

evaluated in this metrics based technique

of code clone detection.

UnderstandTM tool is used to compute the

values of required metrics for

implementing the approach. This tool is

able to export the metrics values as

Comma separated values (CSV) file. These

CSV files are input to another tool which

performs the comparisons of the files.

Each CSV files belongs to a different

version of the software. Since each version

has its own code and data so the

corresponding metrics values of each file

varies accordingly.

The comparison helps to identify the

number of similarities and compare the

metrics value. This comparison suggests

about the overall change in software

architecture and the dynamic changes

occurring (if any) during its evolution.

Table 1 presents the brief description of

each of the metrics along with their name.

No. Metrics Brief Description
1 CountLine Number of all lines

2 Cyclomatic Number of linearly independent paths through a program’s source code

3 CountDeclClass Number of classes.

4 CountDeclFunction Number of functions

5 CountDeclMethod Number of local (not inherited) methods

6 CountInput The no. of inputs a function uses & the no. of unique sub programs calling the function

7 CountOutput The number of outputs that are set

8 CountPath Number of unique paths through a function

9 CountStmtDecl Number of declarative statements

10 CountStmtExe Number of executable statements

11 PercentLack

OfCohesion

Calculates what percentage of class methods use a given class instance variable. A

lower percentage means higher cohesion between class data and methods.

Table 1

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:217

Sr. No.

Versions

Metrics

Classes Files Program

Units

LOC Executable

Statements

1 Test Release 32 67 244 3004 1138

2 Version 0.5 21 44 115 1536 617

3 Version 0.7 31 64 221 2612 1005

4 Version 0.9 35 75 282 3708 1402

5 Version 0.9.7 37 79 346 4793 1787

6 Version 1.0 37 79 349 4849 1812

7 Version 1.0.0rc1 37 79 347 4824 1801

8 Version 1.5rc1 44 92 455 7135 3031

Table 2

Sr.

No.
Metrics

COMPARISON OF METRICS FOR TEST RELEASE OF SOFTWARE

WITH EACH OF ITS SUCCESSOR VERSION

Test

Release

VS

Version

0.5

Test

Release

VS

Version

0.7

Test

Release

VS

Version

0.9

Test

Release

VS

Version

0.9.7

Test

Release

VS

Version

1.0

Test

Release

VS

Version

1.0.0rc1

Test

Release

VS

Version

1.5rc1

1
CountLine

28

Times

49

 Times

46

Times

45

Times

45

Times

45

Times

26

Times

2
Cyclomatic

192

Times
205

Times
206

Times
204

Times
204

Times
204

Times
195

Times

3
CountDeclClass

219

Times

242

Times

224

Times

224

Times

224

Times

224

Times

201

Times

4
CountDeclFunction

245

Times

250

Times

248

Times

248

Times

248

Times

248

Times

242

Times

5
CountDeclMethod

284

Times

285

Times

285

Times

285

Times

285

Times

285

Times

282

Times

6
CountInput

154

Times

142

Times

143

Times

142

Times

142

Times

142

Times

152

Times

7
CountOutput

150

Times

168

Times

164

Times

162

Times

162

Times

162

Times

162

Times

8
CountPath

198

Times

210

Times

212

Times

210

Times

210

Times

210

Times

205

Times

9
CountStmtDecl

116

Times

129

Times

128

Times

125

Times

125

Times

125

Times

104

Times

10
CountStmtExe

49

Times

105

Times

107

Times

105

Times

105

Times

105

Times

100

Times

11
PercentLackOfCohesion

225

Times

248

Times

228

Times

228

Times

228

Times

228

Times

200

Times

1st

with

2nd

1st

with

3rd

1st

with

4th

1st

with

 5th

1st

with

 6th

1st

with

7th

1st

 with

 8th

Table 3

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:218

IV. Conclusion

The CSV files (generated by UnderstandTM

tool) of all the versions are input to the

newly made tool one by one. It starts

comparing the values of the metrics

already calculated by UnderstandTM. The

comparison is performed on the basis of all

the different source code files in Test

Release version and each of its successor

versions one by one. The initially designed

Test version is compared with all other

versions where it reports for the number of

matches occurred in two different versions.

E.g. CountLine matches 28 Times amongst

the two versions i.e. Test Release and

Version 0.5.

When the source code of 1st version (Test

Release) is compared with the rest of the

versions of the software, 8th version

(1.5rc1) of the software shows the least

number of matches of CountLine i.e. 26

Times.

Therefore, it is believed that the overall

number of lines remains quite stable

during these two versions as the number of

matches detected is minimal although

CountLine might also change continuously

with every version due to the editing

(addition/ deletion of source code) of the

files. The fact is quite visible during the

comparisons of other versions as the

number keeps changing a little.

The value of Cyclomatic complexity

remains almost stable while comparing all

versions except the 2nd version (0.5) and

8th version (1.5rc1) where it decreases a

little.

CountDeclClass shows the number of

declared classes in a version. The declared

number of classes remains same while

comparing 1st version with 4th, 5th, 6th and

7th version consecutively while the values

in 1st, 2nd and 8th are found to be changing

a little.

CountDeclFunction and CountDeclMethod

metrics remains same during 1st, 4th, 5th, 6th

and 7th versions. In fact, very negligible

changes are observed amongst all the

versions.

Similar results are observed for the rest of

the metrics i.e. CountInput, CountOutput,

CountPath, CountStmtDecl,

CountStmtExe and

PercentLackOfCohesion. The comparisons

of the metrics values of 1st version with

versions 5th, 6th and 7th are found to be

most stable and 1st version with 2nd and 8th

version also follow the similar study.

Hence, it is concluded that the software

architecture remains stable when the

number of matches occurring in metrics

values of different versions of any

software code are more whereas the code

cloning aspect states that the two

compared versions appears to be replica of

each other when the metrics are same.

REFERENCES

[1] Cook, S., Ji, H., & Harrison, R. (2000).

Software evolution and software evolvability.

University of Reading, UK, 1-12.

[2] https://github.com/Meelo/NALCG?source=cc
[3] http://en.wikipedia.org/wiki/Testdriven_develo

pment

[4] http://www.meteonic.com/solution/static-

codeanalysis/understand.html

[5] https://github.com/Meelo/NALCG?source=cc

[6] https://github.com/Meelo/NALCG/releases

[7] Bal, S., & Sood, S. (2014). Impact of Software

Metrics on Complexity during Evolution of a

Software. National Conference on Emerging

Trends in Computer Science and its

Applications in 21st Century

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:219

