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Abstract:  
 

Biorthogonal spline wavelet full-approximation transform method is proposed for the 
numerical solution of nonlinear integral and integro-differential equations. It  contains biorthogonal 
spline wavelet filter coefficients in the prolongation and restriction operators. The performance of the 
proposed method is better than the existing ones in terms of super convergence with low 
computational time. Some of the test problems are demonstrated for the applicability and efficiency of 
the scheme. 
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1. INTRODUCTION 
 

Linear and nonlinear phenomenon appearing in many applications in scientific fields can be 
modelled by integral and integro-differential equations. Specific applications of integral and integro-
differential equations can be found in the mathematical modelling of spatiotemporal developments, 
epidemic modelling [1] and various biological and physical problems. Analytical solutions of integral 
and integro-differential equations, however, either do not exist or it is often hard to find. It is precisely 
due to this fact that several numerical methods have been developed for finding approximate solutions 
of integral and integro-differential equations [2-4]. 

In the historical three decades the development of effective iterative solvers for nonlinear 
systems of algebraic equations has been a significant research topic in numerical analysis, 
computational science and engineering. Brandt [5] was one of the first to introduce nonlinear 
multigrid method, which seeks to use concepts from the linear multigrid iteration and apply them 
directly in the nonlinear setting. Since the early application to elliptic partial differential equations, 
multigrid method have been applied successfully to a large and growing class of problems. Classical 
multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is to 
smooth the error. Applying multigrid method directly to the nonlinear problems by employing the 
method so-called Full Approximation Scheme (FAS). In FAS, a nonlinear iteration, such as the 
nonlinear Gauss-Seidel method is applied to smooth the error and the residual is passed from the fine 
grids to the coarser grids. Vectors from fine grids are transferred to coarser grids with Restriction 
operator (R), while vectors are transferred from coarse grids to the finer grids with a Prolongation 
operator (P) respectively.  For a detailed treatment of FAS is given in Briggs et al. [6]. An 
introduction of FAS is found in Hackbusch and Trottenberg [7], Wesseling [8] and Trottenberg et al. 
[9]. Many authors applied the FAS for some class of differential equations. The full-approximation 
scheme (FAS) is largely applicable in increasing the efficiency of the iterative methods used to solve 
nonlinear system of algebraic equations. FAS are a well-founded numerical method for solving 
nonlinear system of equations for approximating given differential equation.  Subsequently, the 
development of multiresolution analysis and the fast wavelet transforms by Avudainayagam and Vani 
[10] and Bujurke et al. [11-13] led to extensive research in wavelet multigrid schemes to solve certain 
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differential equations arising in fluid dynamics. Beylkin et al. [14] observed that wavelet 
decomposition can be used to approximate the system of highly sparse matrices. Lee [15] has 
introduced a multigrid method for solving the nonlinear Urysohn integral equations. Ramane et al. 
[27] have applied a new Hosoya polynomial of path graphs for the numerical solution of Fredholm 
integral equations. 
Wavelet analysis is a new branch of mathematics and widely applied in signal analysis, image 
processing and numerical analysis etc. The wavelet methods have proved to be very effective and 
efficient tool for solving problems of mathematical calculus. In recent years, these methods have 
attracted the interest of researchers of structural mechanics and many papers in this field are 
published. In most of the papers the Daubechies wavelets are applied. These wavelets are orthogonal, 
sufficiently smooth and have a compact support. Their shortcoming is that an explicit expression is 
lacking. This obstacle makes the differentiation and integration of these wavelets very complicated. 
For evaluation of such integrals the connection coefficients are introduced, but this complicates the 
course of the solution to a great extent [16]. Shiralashetti et al. [17, 18] applied the Haar wavelet 
collocation method for the numerical solution of multi-term fractional differential equations and 
singular initial value problems. Shilralashetti et al. [19] has proposed the wavelet based decoupled 
method for the investigation of surface roughness effects in elastohydrodynamic lubrication problems 
using couple stress fluid. Also, Shilralashetti et al. [20] have introduced a new wavelet based full-
approximation scheme for the numerical solution of nonlinear elliptic partial differential equations.  
Biorthogonal wavelet basis were introduced by Cohen-Daubechies-Feauveau in order to obtain 
wavelet pairs that are symmetric, regular and compactly supported. Unfortunately, this is 
incompatible with the orthogonality requirement that has to be dropped altogether. Biorthogonal 
wavelets build with splines are especially attractive because of their short support and regularity. So it 
is called a “Biorthogonal Spline Wavelets” [21]. In the biorthogonal case, rather than having one 
scaling and wavelet function, there are two scaling functions  ,  , that may generate different 

multiresolution analysis, and accordingly two different wavelet functions   ,  . But biorthogonal 

wavelet based multigrid schemes are found to be effective [22]. Biorthogonal wavelet based multigrid 
schemes provide some remedy in such challenging cases. Sweldens [23] highlights effectively the 
construction of biorthogonal wavelet filters for the solution of large class of ill-conditioned system. In 
this paper, we developed the biorthogonal spline wavelet full-approximation transform method 
(BSWFATM) for the numerical solution of nonlinear integral and integro-differential equations using 
discrete biorthogonal spline wavelet transform (DBSWT) matrix. This matrix designed and 
implemented by Ruch and Fleet [24, 25] for decomposition and reconstruction of the given signals 
and images. Using these decomposition and reconstruction matrices we introduced restriction and 
prolongation operators respectively in the implementation of biorthogonal spline wavelet full-
approximation transform method (BSWFATM).  

The organization of this paper is as follows. In section 2, properties of biorthogonal spline 
wavelets are discussed. In Section 3, method of solution is presented. In section 4, method of 
implementation, numerical experiments and results are given. Finally, conclusion of the proposed 
work is given in section 5. 

 

PROPERTIES OF BIORTHOGONAL WAVELETS 
 

Discrete Biorthogonal Spline wavelet transform (DBSWT) matrix: 
Let us consider the (5, 3) biorthogonal spline wavelet filter pair, 
We have 

 

and 

 

To form the highpass filters, We have 
 

1 0 1

2 2 2
( , , ) , ,

4 2 4
c c c c

 
    

 
   

2 1 0 1 2

2 2 3 2 2 2
( , , , , ) , , , ,

8 4 4 4 8
c c c c c c 

  
    

 

1 1( 1) and ( 1)k k
k k k kd c d c    
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The highpass filter pair d and  for the (5, 3) biorthogonal spline filter pair. 

and  

In this paper, we use the filter coefficients which are,  

Low pass filter coefficients: and High pass filter coefficients:  for 

decomposition matrix. 
Low pass filter coefficients: and High pass filter coefficients: 

 for reconstruction matrix.   

The matrix formulation of the discrete biorthogonal spline wavelet transforms (DBSWT) plays an 
important role in both biorthogonal spline wavelet transforms method (BSWTM) and biorthogonal 
Spline wavelet full-approximation transform method (BSWFATM) for the numerical computations. 
As we already know about the DBSWT matrix and its applications in the wavelet method and is given 
in [24] as, 
Decomposition matrix: 

   

Reconstruction matrix: 

             

 
Biorthogonal Spline wavelet Full approximation transform operators:  
Using the above matrices, we introduced biorthogonal spline wavelet restriction and biorthogonal 
spline wavelet prolongation operators respectively. i.e.,  
Biorthogonal spline wavelet restriction operator: 
 

       

 

  
Biorthogonal spline wavelet prolongation operator: 

d

0 1 2

2 2 2
, ,

4 2 4
d d d


   1 0 1 2 3

2 2 3 2 2 2
, , , ,

8 4 4 4 8
d d d d d


        

2 1 0 1 2, , , ,c c c c c  0 1 2, ,d d d

1 2 0 1 1 0, ,c d c d c d      

1 2 0 1 1 0 2 1 3 2, , , ,d c d c d c d c d c             
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                                 .

 

Modified Discrete Biorthogonal Spline wavelet transform (MDBSWT) matrix: 
Here, we developed MDBSWT matrix from DBSWT matrix in which by adding rows and columns 
consecutively with diagonal element as 1, which is built as, 
New decomposition matrix: 
 

  

New reconstruction matrix: 

      

 
Modified Biorthogonal Spline Wavelet Full Approximation Transform operators:  
Using the above matrices, we introduced a new biorthogonal spline wavelet restriction and 
prolongation operators respectively as, 
New biorthogonal spline wavelet restriction operator: 

2
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 New biorthogonal spline wavelet prolongation operator: 

                        

 

 
3. Biorthogonal Spline Wavelet Full-Approximation Transform Method 
(BSWFATM) of solution  
 
Consider the Nonlinear Fredholm integral equation of the second kind,  

1

0

( ) ( ) ( , , ( )) ,u t f t K t s u s ds  
     

0 , 1,t s     (3.1) 

Consider the Nonlinear Volterra integral equation of the second kind,  

0

( ) ( ) ( , , ( )) ,
t

u t f t K t s u s ds  
     

0 , 1,t s     (3.2) 

where K(t, s, u(s)) is a nonlinear function defined on [0, 1]×[0, 1]. The known function K(t, s, u(s)) is 
called the kernel of the integral equation, while the unknown function u(t) represents the solution of 
the integral equation. After discretizing the integral equation through the trapezoidal discretization 
method (TDM) [26], we get the system of nonlinear equations of the form,   

i.e.,   ( )F u f                                                              (3.3) 

where F  is M M  coefficient matrix, I is the identity matrix, f  is 1M   matrix and u  is 1M   

matrix to be determined. This has M equations with M unknowns. Solving the system of Eq. (3.3) 
through the iterative method that is Gauss Seidel (GS), we get approximate solution v  of u . i.e., 

u e v v u e     , where e  is  ( 1M   matrix) error to be determined. 

Now, we are deliberating about the Biorthogonal Spline Wavelet Full-Approximation Transform 
Method (BSWFATM) of solutions given by Briggs et. al [6] is as follows the procedure, 
From the system Eq. (3.3), we get the approximate solution v  for u . Now we find the residual as 

1 1 1( )M M Mr f F v    .
                                                    

(3.4) 

Reduce the matrices in the finer level to coarsest level using Biorthogonal Spline Wavelet Restriction 
operator and then construct the matrices back to finer level from the coarsest level using Biorthogonal 
Spline Wavelet Prolongation operator as given in section 2. 
Next, 
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 
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1
1

2 2

[ ] [ ]M R M M
M

r BSWT r 
 
 . 

Similarly,                                       1
1

2 2

[ ] [ ]M R M M
M

v BSWT v 
 
  

and                                               
1 1 1 1

2 2 2 2

( ) ( )M M M MF v e F v r
   
   .                                      (3.5) 

Solve Eq. (3.5) with initial guess ‘0’, we get 
1

2

Me


. 

Next, 

1 1
4 4 2 2

[ ] [ ]M R M M Mr BSWT r
  
 . 

Similarly,                                      
1 1

4 4 2 2

[ ] [ ]M R M M Mv BSWT v
  
  

and                                               
1 1 1 1

4 4 4 4

( ) ( )M M M MF v e F v r
   
   .                                      (3.6) 

Solve Eq. (3.6) with initial guess ‘0’, we get 
1

4

Me


. 

Next, The procedure is continue up to the coarsest level, we have, 

1 1 1 2 2 1[ ] [ ]Rr BSWT r   . 

Similarly,                                         1 1 1 2 2 1[ ] [ ]Rv BSWT v    

and                                                 1 1 1 1 1 1 1 1( ) ( )F v e F v r      .                                           (3.7) 

Solve Eq. (3.7) we get, 1 1e  . 

Next, Interpolate error up to the finer level, i.e.   

2 1 2 1 1 1[ ] [ ]Pe BSWT e   , 

4 1 4 2 2 1[ ] [ ]Pe BSWT e    

and so on we have,                         1
1

2 2

[ ] [ ]M P M M
M

e BSWT e
 

 . 

Lastly, Correct the solution with error, 1 1 1[ ] [ ]M M Mu v e    . 

This is the required solution of the given integral equation. 
Similarly, we solve the Modified Biorthogonal Spline Wavelet Full Approximation Transform 
Method using the new wavelet intergrid operators.   
 

4. METHOD OF IMPLEMENTATION 
 

In this section, we implemented FAS, BSWFATM and MBSWFATM for the numerical solution of 
nonlinear integral and integro-differential equations and subsequently presented in tables and figures, 

here error analysis is considered as maxmax e aE u u  , where eu  and au  are exact and approximate 

solutions respectively.  
Test problem 4.1 Firstly, consider Nonlinear Fredholm integral equations [27] 

1
3 2 3 5 2

0

367 11357 2095
( ) sin(4 ) cos(4)sin(4) cos (4) ( ) ,

4096 98304 32768
u t t t t s u s ds

 
      

 
 0 1t   

   (4.1) 

which has the exact solution ( ) sin( 4 ).u t t  After discretizing the Eq. (4.1) through the trapezoidal 

discretization method (TDM), we get system of nonlinear algebraic equations of the form (for M = 8), 

     
8 8 8 1 8 1

F u f
  

                                                 (4.2) 
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Solving Eq. (4.2) through the iterative method, we get the approximate solution v  of u . i.e.,

u e v v u e     , where ' 'e  is (8 1  matrix) error to be determined. The implementation of 

MBSWFATM is discussed in section 3 is as follows, 
From Eq. (4.2), we find the residual as 

      8 1 8 1 8 8 8 1
r b A v   

                                            (4.3) 

We get, 
8 1r 

= [        0        0       -3.98e-09      -3.69e-07      -5.75e-06      -1.50e-05      8.31e-05     

6.44e-04] 

We reduce the matrices in the finer level to coarsest level using Restriction operator RMBSWT  and 

then construct the matrices back to finer level from the coarsest level using Prolongation operator 
T

PMBSWT . 

From Eq. (4.3), 

   4 1 4 8 8 1Rr MBSWT r  


                (4.4)
 

Similarly,                                           
4 1 4 8 8 1[ ] [ ]Rv MBSWT v    

and                                               
4 1 4 1 4 1 4 1( ) ( )A v e A v r      .                                        (4.5) 

Solve Eq. (4.5) with initial guess ‘0’, we get 
4 1e 

. 

From Eq. (4.4), 

                                                2 1 2 4 4 1Rr MBSWT r  
                                           (4.6) 

Similarly,                                            
2 1 2 4 4 1[ ] [ ]Rv MBSWT v    

and                                               
2 1 2 1 2 1 2 1( ) ( )A v e A v r      .                                       (4.7) 

Solve Eq. (4.7) with initial guess ‘0’, we get 
2 1e 

. 

From Eq. (4.6), 

                                  
   1 1 1 2 2 1Rr MBSWT r  

                                            (4.8) 

Similarly,                                             1 1 1 2 2 1[ ] [ ]Rv MBSWT v  
  
 

and                                                 
1 1 1 1 1 1 1 1( ) ( )A v e A v r      .                                       (4.9) 

Solve Eq. (4.9) we get, 
1 1e 

. 

From 
1 1e 

, Interpolate error up to the finer level, i.e.   

           2 1 2 1 1 1[ ] [ ]T
Pe MBSWT e   , 

           4 1 4 2 2 1[ ] [ ]T
Pe MBSWT e    

and lastly we have,                              8 1 8 4 4 1[ ] [ ]T
Pe MBSWT e   .             (4.10) 

We get 
8 1e 

= [  1.43e-06      7.32e-11      3.56e-05      -3.67e-07       1.03e-05      0      -7.15e-07          

0] 

From Eq. (4.10) Correct the solution with error 8 1 8 1 8 1u v e    . 

Lastly, we get 8 1u   is the required solution of Eq. (4.1). The numerical solutions of the given equation 

is obtained through the present method as explained in section 3 and are presented in comparison with 
the exact solution are shown in the table 1 and the figure 1, for M = 64. Maximum error analysis and 
CPU time are shown in table 2. 
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Table 1. Numerical results of test problem 4.1, for M = 16. 

t FAS BSWFATM MBSWFATM EXACT 

0 0.0000 0.0000 0.0000 0 

0.0666 -0.2635 -0.2631 -0.2635 -0.2635 

0.1333 -0.5084 -0.5083 -0.5081 -0.5084 

0.2000 -0.7173 -0.7173 -0.7173 -0.7173 

0.2666 -0.8755 -0.8755 -0.8754 -0.8756 

0.3333 -0.9718 -0.9718 -0.9718 -0.9719 

0.4000 -0.9994 -0.9994 -0.9994 -0.9995 

0.4666 -0.9562 -0.9562 -0.9562 -0.9565 

0.5333 -0.8454 -0.8454 -0.8454 -0.8459 

0.6000 -0.6748 -0.6748 -0.6748 -0.6754 

0.6666 -0.4564 -0.4564 -0.4564 -0.4572 

0.7333 -0.2056 -0.2056 -0.2056 -0.2067 

0.8000 0.0598 0.0597 0.0597 0.0583 

0.8666 0.3212 0.3210 0.3210 0.3193 

0.9333 0.5598 0.5595 0.5595 0.5578 

1 0.7592 0.7587 0.7587 0.7568 
 
 

Table 2. Maximum error and CPU time (in seconds) of the methods of test problem 4.1. 

M Method maxE  Setup time Running time Total time 

16 
FAS 2.45e-03 0.0161 0.0915 0.1075 

BSWFATM 1.98e-03 0.0245 0.0753 0.0999 
MBSWFATM 1.98e-03 0.0102 0.0701 0.0803 

32 
FAS 5.54e-04 0.0285 0.4081 0.4366 

BSWFATM 3.17e-04 0.0148 0.3372 0.3520 
MBSWFATM 3.17e-04 0.0080 0.3222 0.3302 

64 
FAS 1.28e-04 0.2280 3.0487 3.2767 

BSWFATM 8.45e-05 0.0148 2.7879 2.8027 
MBSWFATM 8.45e-05 0.0075 1.8799 1.8873 

 
Fig. 1. Comparison of numerical solutions with exact solution of test problem 4.1, for M=64. 

Test problem 4.2 Secondly, consider the nonlinear Fredholm-Hammerstein integral equation [28], 
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1
2

0

55 1 8 241 1
( ) ln( 1) ln 2 2 ln 2 ( ) ( )

108 3 3 576 2
u t t t t t t t s u s ds

 
         

 
 ,  0 1t                   

   (4.11) 

which has the exact solution ( ) ln( 1).u t t t  The numerical solutions of Eq. (4.11) is obtained 

through the present method as explained in section 3 and are presented in comparison with the exact 
solution are shown in the table 3 and the figure 2, for M = 64. Maximum error analysis and CPU time 
are shown in table 4. 
 

Table 3. Numerical results of test problem 4.2, for M = 16. 

t FAS BSWFATM MBSWFATM EXACT 

0 -0.0003 -0.0003 -0.0003 0 

0.0666 0.0039 0.0039 0.0039 0.0043 

0.1333 0.0163 0.0163 0.0163 0.0166 

0.2000 0.0361 0.0361 0.0361 0.0364 

0.2666 0.0627 0.0627 0.0627 0.0630 

0.3333 0.0956 0.0956 0.0956 0.0958 

0.4000 0.1343 0.1343 0.1343 0.1345 

0.4666 0.1784 0.1784 0.1784 0.1787 

0.5333 0.2277 0.2277 0.2277 0.2279 

0.6000 0.2817 0.2817 0.2817 0.2820 

0.6666 0.3403 0.3403 0.3403 0.3405 

0.7333 0.4031 0.4031 0.4031 0.4033 

0.8000 0.4700 0.4700 0.4700 0.4702 

0.8666 0.5407 0.5407 0.5407 0.5409 

0.9333 0.6151 0.6151 0.6151 0.6152 

1 0.6930 0.6930 0.6930 0.6931 
 
 

Table 4. Maximum error and CPU time (in seconds) of the methods of test problem 4.2. 

M Method maxE  Setup time Running time Total time 

16 
FAS 3.66e-04 0.0274 0.0462 0.0736 

BSWFATM 3.66e-04 0.0178 0.0314 0.0492 
MBSWFATM 3.66e-04 0.0100 0.0289 0.0389 

32 
FAS 8.57e-05 0.0252 0.0483 0.0735 

BSWFATM 8.57e-05 0.0148 0.0447 0.0594 
MBSWFATM 8.57e-05 0.0100 0.0399 0.0500 

64 
FAS 2.07e-05 0.0806 0.1031 0.1836 

BSWFATM 2.07e-05 0.0148 0.0993 0.1141 
MBSWFATM 2.07e-05 0.0103 0.0954 0.1057 

128 
FAS 5.10e-06 0.1789 0.2082 0.3871 

BSWFATM 5.10e-06 0.0093 0.2195 0.2288 
MBSWFATM 5.10e-06 0.0063 0.1904 0.1966 
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Fig. 2. Comparison of numerical solutions with exact solution of test problem 4.2, for M=64. 

Test problem 4.3 Next, consider Nonlinear Fredholm-Hammerstein integro-differential equation 
[29], 
 

  
   

1
2

0

1
'( ) 1 ( ) , (0) 0,

3
u t t t u s ds u      0 1t                      (4.12) 

 

which has the exact solution ( ) .u t t  
Integrating the Eq. (4.12) w.r.to  t  and using the initial condition, we get 
 

12 2
2

0

( ) ( ) ,
6 2

t t
u t t u s ds     

 
Solving this equation, we obtain the numerical solution through the present method as explained in 
section 3 and are presented in comparison with the exact solution are shown in the table 5 and the 
figure 3, for M = 64. Maximum error analysis and CPU time are shown in table 6. 
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Table 5. Numerical results of test problem 4.3, for M = 16. 

t FAS BSWFATM MBSWFATM EXACT 

0 0.0000 0.0000 0.0000 0 

0.0666 0.0666 0.0666 0.0666 0.0666 

0.1333 0.1333 0.1333 0.1333 0.1333 

0.2000 0.2000 0.2000 0.2000 0.2000 

0.2666 0.2666 0.2666 0.2666 0.2666 

0.3333 0.3333 0.3333 0.3333 0.3333 

0.4000 0.4000 0.4000 0.4000 0.4000 

0.4666 0.4666 0.4666 0.4666 0.4666 

0.5333 0.5333 0.5333 0.5333 0.5333 

0.6000 0.6000 0.6000 0.6000 0.6000 

0.6666 0.6666 0.6666 0.6666 0.6666 

0.7333 0.7333 0.7333 0.7333 0.7333 

0.8000 0.7998 0.7998 0.7998 0.8000 

0.8666 0.8665 0.8665 0.8665 0.8666 

0.9333 0.9332 0.9332 0.9332 0.9333 

1 0.9998 0.9998 0.9998 1 
 

Table 6. Maximum error and CPU time (in seconds) of the methods of test problem 4.3. 

M Method maxE  Setup time Running time Total time 

16 
FAS 1.70e-03 0.0157 0.1053 0.1210 

BSWFATM 1.70e-03 0.0205 0.0797 0.1002 
MBSWFATM 1.70e-03 0.0104 0.0668 0.0772 

32 
FAS 9.71e-04 0.0286 0.4099 0.4385 

BSWFATM 9.71e-04 0.0148 0.4074 0.4222 
MBSWFATM 9.71e-04 0.0100 0.4010 0.4110 

64 
FAS 5.13e-04 0.0633 2.8380 2.9012 

BSWFATM 5.13e-04 0.0150 2.4331 2.4481 
MBSWFATM 5.13e-04 0.0062 1.5218 1.5281 

 
Fig. 3. Comparison of numerical solutions with exact solution of test problem 4.3, for M=64. 

Test problem 4.4 Next, consider the Nonlinear Volterra integral equation [30], 
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   2 2

0

( ) ( ) ( ) ,
t

u t f t t s u s ds   ,  0 1t                      (4.13) 

where 
2 3 4 3 2 2 3 411 2 1 2 1 11 5 2

( ) 1 ln( 1) ( )(ln( 1)) .
9 3 3 9 3 9 18 27

f t t t t t t t t t t t t
 

            
 

 

which has the exact solution ( ) ln( 1).u t t   After discretizing the Eq. (4.13) through the trapezoidal 

discretization method (TDM), we get system of nonlinear algebraic equations of the form (for M = 8), 

     
8 8 8 1 8 1

A u b
  

                                                 (4.14) 

Solving Eq. (4.14) through the iterative method, we get the approximate solution v  of u . i.e.,

u e v v u e     , where ' 'e  is (8 1  matrix) error to be determined. The implementation of 

MBSWFATM is discussed in section 3 is as follows, 
From Eq. (4.14), we find the residual as 

      8 1 8 1 8 8 8 1
r b A v   

                                              (4.15) 

We get, 
8 1r 

= [    0        0       3.52e-07        1.14e-05      1.29e-04       8.29e-04      3.66e-03 

  4.29e-03] 

We reduce the matrices in the finer level to coarsest level using Restriction operator RMBSWT  and 

then construct the matrices back to finer level from the coarsest level using Prolongation operator 
T

PMBSWT . 

From Eq. (4.15), 

   4 1 4 8 8 1Rr MBSWT r  


                 (4.16)
 

Similarly,                                         
4 1 4 8 8 1[ ] [ ]Rv MBSWT v    

and                                               
4 1 4 1 4 1 4 1( ) ( )A v e A v r      .                                        (4.17) 

Solve Eq. (4.17) with initial guess ‘0’, we get 
4 1e 

. 

From Eq. (4.16), 

                                                 2 1 2 4 4 1Rr MBSWT r  
                                             (4.18) 

Similarly,                                         
2 1 2 4 4 1[ ] [ ]Rv MBSWT v    

and                                               
2 1 2 1 2 1 2 1( ) ( )A v e A v r      .                                       (4.19) 

Solve Eq. (4.19) with initial guess ‘0’, we get 
2 1e 

. 

From Eq. (4.18), 

                                     
   1 1 1 2 2 1Rr MBSWT r  


 
                                          (4.20) 

Similarly,                                          1 1 1 2 2 1[ ] [ ]Rv MBSWT v    

and                                                 
1 1 1 1 1 1 1 1( ) ( )A v e A v r                                              (4.21) 

Solve Eq. (4.21) we get, 
1 1e 

. 

From 
1 1e 

, Interpolate error up to the finer level, i.e.   

           2 1 2 1 1 1[ ] [ ]T
Pe MBSWT e   , 

           4 1 4 2 2 1[ ] [ ]T
Pe MBSWT e    

and lastly we have,                              8 1 8 4 4 1[ ] [ ]T
Pe MBSWT e   .             (4.22) 

We get 
8 1e 

= [  1.50e-05        0       1.75e-03      7.95e-06       5.03e-04         0      -7.53e-06            0] 

From Eq. (4.22) Correct the solution with error 8 1 8 1 8 1u v e    . 

Lastly, we get 8 1u   is the required solution of Eq. (4.13). The numerical solutions of the given 

equation is obtained through the present method as explained in section 3 and are presented in 
comparison with the exact solution are shown in the table 7 and the figure 4 for M = 64. Maximum 
error analysis and CPU time is shown in table 8. 
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Table 7. Numerical results of test problem 4.4, for M = 16. 

t FAS BSWFATM MBSWFATM EXACT 

0 0.0000 0.0000 0.0000 0 

0.0666 0.0645 0.0650 0.0645 0.0645 

0.1333 0.1251 0.1253 0.1259 0.1251 

0.2000 0.1823 0.1822 0.1823 0.1823 

0.2666 0.2364 0.2364 0.2366 0.2363 

0.3333 0.2877 0.2877 0.2877 0.2876 

0.4000 0.3367 0.3367 0.3366 0.3364 

0.4666 0.3835 0.3835 0.3835 0.3829 

0.5333 0.4284 0.4284 0.4284 0.4274 

0.6000 0.4717 0.4716 0.4716 0.4700 

0.6666 0.5137 0.5135 0.5135 0.5108 

0.7333 0.5544 0.5542 0.5542 0.5500 

0.8000 0.5946 0.5940 0.5940 0.5877 

0.8666 0.6341 0.6331 0.6331 0.6241 

0.9333 0.6729 0.6718 0.6718 0.6592 

1 0.6958 0.6947 0.6947 0.6931 
 

Table 8. Maximum error and CPU time (in seconds) of the methods of test problem 4.4. 

M Method maxE  Setup time Running time Total time 

16 
FAS 1.36e-02 0.0158 0.0750 0.0908 

BSWFATM 1.26e-02 0.0147 0.0733 0.0880 
MBSWFATM 1.26e-02 0.0101 0.0676 0.0778 

32 
FAS 7.86e-03 0.0284 0.4068 0.4352 

BSWFATM 7.50e-03 0.0148 0.4064 0.4211 
MBSWFATM 7.50e-03 0.0100 0.3366 0.3467 

64 
FAS 4.19e-03 0.0833 3.2563 3.3396 

BSWFATM 4.09e-03 0.0149 3.0753 3.0903 
MBSWFATM 4.09e-03 0.0102 2.2629 2.2732 

 
Fig. 4. Comparison of numerical solutions with exact solution of test problem 4.4, for M=64. 

Test problem 4.5 Next, consider the Nonlinear Volterra-Hammerstein integral equation [31], 
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   8 7 6 5 2 3

0

15 13 11 9
( ) ( ) ( )

56 14 10 20

t

u t t t t t t t t s u s ds


        ,  0 1t              (4.23) 

which has the exact solution 2( ) .u t t t  The numerical solutions of Eq. (4.23) is obtained through 

the present method as explained in section 3 and are presented in comparison with the exact solution 
are shown in the table 9 and the figure 5, for M = 64. Maximum error analysis and CPU time are 
shown in table 10. 

Table 9. Numerical results of test problem 4.5, for M = 16. 
t FAS BSWFATM MBSWFATM EXACT 
0 0.0000 0.0000 0.0000 0 

0.0666 -0.0622 -0.0622 -0.0622 -0.0622 
0.1333 -0.1155 -0.1155 -0.1155 -0.1155 
0.2000 -0.1600 -0.1600 -0.1600 -0.1600 
0.2666 -0.1957 -0.1957 -0.1957 -0.1955 
0.3333 -0.2224 -0.2224 -0.2224 -0.2222 
0.4000 -0.2403 -0.2404 -0.2403 -0.2400 
0.4666 -0.2493 -0.2493 -0.2493 -0.2488 
0.5333 -0.2494 -0.2494 -0.2494 -0.2488 

0.6000 -0.2405 -0.2405 -0.2405 -0.2400 

0.6666 -0.2227 -0.2227 -0.2227 -0.2222 
0.7333 -0.1959 -0.1959 -0.1959 -0.1955 
0.8000 -0.1602 -0.1602 -0.1602 -0.1600 
0.8666 -0.1156 -0.1156 -0.1156 -0.1155 

0.9333 -0.0622 -0.0622 -0.0622 -0.0622 
1 -0.0000 -0.0000 -0.0000 0 

 
Table 10. Maximum error and CPU time (in seconds) of the methods of test problem 4.5. 

M Method maxE  Setup time Running time Total time 

16 
FAS 5.72e-04 0.0144 0.0949 0.1093 

BSWFATM 5.59e-04 0.0135 0.0915 0.1050 
MBSWFATM 5.57e-04 0.0100 0.0737 0.0837 

32 
FAS 2.81e-04 0.0208 0.4138 0.4346 

BSWFATM 2.77e-04 0.0083 0.3506 0.3588 
MBSWFATM 2.77e-04 0.0060 0.3348 0.3408 

64 
FAS 1.38e-04 0.0688 0.1026 0.1714 

BSWFATM 1.37e-04 0.0098 0.0948 0.1045 
MBSWFATM 1.37e-04 0.0072 0.0962 0.1034 

128 
FAS 6.87e-05 0.3143 0.4560 0.7703 

BSWFATM 6.85e-05 0.0100 0.4471 0.4571 
MBSWFATM 6.85e-05 0.0137 0.4430 0.4567 
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Fig. 5. Comparison of numerical solutions with exact solution of test problem 4.5, for M=64. 

 
Test problem 4.6 Next, consider the Nonlinear Volterra integro-differential equation [32], 

  
   2

0

'( ) 1 ( ) , (0) 0,
t

u t u s ds u      0 1t                    (4.24) 

which has the exact solution 
4 7 10 13

( )
12 252 6048 157248

t t t t
u t t     . 

We convert the Volterra integro-differential equation to equivalent Volterra integral equation by using 
the well-known formula, which converts multiple integrals into a single integral.  
i.e., 

1

0 0 0 0

1
........ ( ) ( ) ( )

( 1)!

t t t t
n nu t dt t s u s ds

n
 

     

Integrating Eq. (4.24) on both sides from 0 to t and using the initial condition and also converting the 
double integral to the single integral, we obtain, 

2

0

( ) ( ) ( , ) ( ) ,
t

u t f t k t s u s ds       (4.25) 

where ( , ) ( )k t s t s   and ( )f t t . 

The numerical solutions of Eq. (4.25) is obtained through the present method as explained in section 3 
and presented in table 11 for M = 16 and in figure 6 for M = 64. Maximum error analysis and CPU 
time is shown in table 12. 
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Table 11. Numerical results of test problem 4.6, for M = 16. 

t FAS BSWFATM MBSWFATM EXACT 

0 0.0000 0.0000 0.0000 0 

0.0666 -0.0666 -0.0666 -0.0666 -0.0666 

0.1333 -0.1333 -0.1333 -0.1333 -0.1333 

0.2000 -0.1998 -0.1998 -0.1998 -0.1998 

0.2666 -0.2662 -0.2662 -0.2662 -0.2662 

0.3333 -0.3323 -0.3323 -0.3323 -0.3323 

0.4000 -0.3979 -0.3979 -0.3979 -0.3978 

0.4666 -0.4628 -0.4628 -0.4628 -0.4627 

0.5333 -0.5267 -0.5267 -0.5267 -0.5266 

0.6000 -0.5894 -0.5894 -0.5894 -0.5893 

0.6666 -0.6505 -0.6505 -0.6505 -0.6504 

0.7333 -0.7098 -0.7098 -0.7098 -0.7096 

0.8000 -0.7668 -0.7668 -0.7668 -0.7666 

0.8666 -0.8213 -0.8213 -0.8213 -0.8210 

0.9333 -0.8727 -0.8727 -0.8727 -0.8724 

1 -0.9207 -0.9207 -0.9207 -0.9204 
 

Table 12. Maximum error and CPU time (in seconds) of the methods of test problem 4.6. 

M Method maxE  Setup time Running time Total time 

16 
FAS 2.81e-04 0.0159 0.0349 0.0508 

BSWFATM 2.81e-04 0.0148 0.0317 0.0465 
MBSWFATM 2.81e-04 0.0130 0.0275 0.0404 

32 
FAS 6.56e-05 0.0233 0.0385 0.0618 

BSWFATM 6.56e-05 0.0117 0.0356 0.0474 
MBSWFATM 6.56e-05 0.0080 0.0318 0.0398 

64 
FAS 1.57e-05 0.0595 0.0763 0.1358 

BSWFATM 1.57e-05 0.0107 0.0719 0.0825 
MBSWFATM 1.57e-05 0.0072 0.0689 0.0761 

128 
FAS 3.69e-06 0.2930 0.3258 0.6188 

BSWFATM 3.69e-06 0.0149 0.3280 0.3430 
MBSWFATM 3.69e-06 0.0102 0.3207 0.3309 
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Fig. 6. Comparison of numerical solutions with exact solution of test problem 4.6, for M=64. 

Test problem 4.7. Lastly, consider the nonlinear Volterra-Fredholm-Hammerstein integral equation 
[33], 

  
   

1
2 2

0

( ) 1 sin ( ) ( , ) ( )u t t K t s u s ds    ,  0 1t                                       (4.26) 

3sin( ), 0
( , )

0, 1

t s s t
K t s

t s

   
 

 
       

which has the exact solution ( ) cos .u t t The numerical solutions of Eq. (4.26) is obtained through the 

present method as explained in section 3 and presented in comparison with the exact solution are 
shown in the table 13 and in the figure 7, for M = 64. Maximum error analysis and CPU time are 
shown in table 14. 

Table 13. Numerical results of test problem 4.7, for M = 16. 

t FAS BSWFATM MBSWFATM EXACT 

0 1.0000 1.0000 1.0000 1 

0.0666 0.9977 0.9977 0.9977 0.9977 

0.1333 0.9911 0.9911 0.9911 0.9911 

0.2000 0.9800 0.9800 0.9800 0.9800 

0.2666 0.9646 0.9646 0.9646 0.9646 

0.3333 0.9449 0.9449 0.9449 0.9449 

0.4000 0.9209 0.9209 0.9209 0.9210 

0.4666 0.8929 0.8929 0.8929 0.8930 

0.5333 0.8610 0.8610 0.8610 0.8611 

0.6000 0.8252 0.8252 0.8252 0.8253 

0.6666 0.7857 0.7857 0.7857 0.7858 

0.7333 0.7427 0.7427 0.7427 0.7429 

0.8000 0.6965 0.6965 0.6965 0.6967 

0.8666 0.6472 0.6472 0.6472 0.6473 

0.9333 0.5950 0.5950 0.5950 0.5951 

1 0.5401 0.5401 0.5401 0.5403 
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Table 14. Maximum error and CPU time (in seconds) of the methods of test problem 4.7. 

M Method maxE  Setup time Running time Total time 

16 
FAS 1.60e-04 0.0160 0.0350 0.0510 

BSWFATM 1.60e-04 0.0148 0.0312 0.0460 
MBSWFATM 1.60e-04 0.0100 0.0280 0.0380 

32 
FAS 3.75e-05 0.0286 0.0485 0.0771 

BSWFATM 3.75e-05 0.0149 0.0448 0.0597 
MBSWFATM 3.75e-05 0.0101 0.0400 0.0501 

64 
FAS 9.10e-06 0.0790 0.1030 0.1820 

BSWFATM 9.10e-06 0.0149 0.0994 0.1143 
MBSWFATM 9.10e-06 0.0101 0.0953 0.1054 

128 
FAS 2.23e-06 0.2856 0.3512 0.6368 

BSWFATM 2.23e-06 0.0167 0.3224 0.3391 
MBSWFATM 2.23e-06 0.0103 0.3268 0.3371 

 
Fig. 7. Comparison of numerical solutions with exact solution of test problem 4.7, for M=64. 

 

5. CONCLUSION 
 

We proposed a biorthogonal spline wavelet transform method using wavelet intergrid operators based 
on biorthogonal spline wavelet filter coefficients for the numerical solution of integral and integro-
differential equations. Wavelet intergrid operators of prolongation and restrictions are defined, a 
MBSWFATM, has been shown to be effective and versatile. Test problems are justified through the 
error analysis, as the level of resolution M increases for higher accuracy. The numerical solutions 
obtained agree well with the exact ones, as increasing the number M used. In this paper, the FAS, 
BSWFATM and MBSWFATM shows the error’s are same, but the CPU time changes. The standard 
FAS and BSWFATM converges slowly with larger computational cost as compared to MBSWFATM 
ensure such slower convergence with lesser computational cost as shown in the tables. The numerical 
implementation from the tables demonstrates the accuracy of the approximations and super 
convergence phenomena with less CPU time. Hence, the proposed scheme is very convenient and 
efficient than the existing standard methods. 
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