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Abstract-Amongst the discrete orthogonal transforms, discrete cosine transform (DCT) and discrete sine 

transform (DST) are the most popular transforms and considered as the best substitute of the Karhunen-Loeve 

transform (KLT), not only for their near optimal performance but also for computational convenience. Therefore, 

the DCT and DST have been widely used in data compression, filtering and feature extraction applications. Several 

algorithms are reported in literature for efficient implementation of the DCT and  DST in general – purpose 

computers, and also in dedicated VLSI. The VLSI systems yield high throughput of results by maximizing the 

processing concurrency, so that they provide less expensive and more suitable alternative to general – purpose 

computers, for real – time and on-line applications. 

INTRODUCTION 

     In 1974, Ahmed et al. [1] proposed a real-valued discrete transform called the discrete cosine transform 

(DCT) and in 1976, A.K.Jain [19] proposed a real-valued discrete transform called the discrete sine transform 

(DST) which have emerged  as the most popular substitute of the Karhunen-Loeve transform (KLT) in several 

speech and image signal processing applications [12, 38].  The KLT is known to be optimal with respect to 

the performance measures like the variance distribution [ 2 ], the mean-square criterion [32, 34] and the rate 

distortion function [31, 33] but there is no general algorithm for its fast computation.  Compared with other 

orthogonal transforms such as the Walsh Hadamard transform (WHT), the discrete Fourier transform (DFT), 

the Haar transform (HT), and the Slant transform (ST), the performances of DCT and  DST are found to be 

more close to that of the KLT.   

DCT and DST 

The DCT of a sequence { x(n),    ,1,2,….., N-1} is defined as [1] 
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for k =0,1,2,…., N-1      where   ( )  * 
                                 

                               
  

The DST of a sequence  { x(n), n = 1,2,…..,N }  is defined as [19]  
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and the inverse discrete sine transform (IDST) is given by  
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for k = 1,2, ………..., N. 

where   ( )  *                   
                          

  

Since   ( )  effects only the amplitude of X( N) component, we shall take   ( ) as unity with X(N) scaled up 

by √2. 

The DCT defined by equation (1) can be written in matrix form  as    

  x = 
 

 
 CN x                                (5)              

The DST defined by equation  (3) can be written in matrix form as  

x = 
 

 
 SN x                                (6)         

Where X and x are the column vectors denoting the DCT/DST and the input data sequences, respectively, 

arranged in natural order. CN  denotes the DCT matrix of order N x N defined by equation (1) .  SN  denotes 

the DST matrix of order N x N defined by equation ( 3). Without loss of generality , the normalizing factor 

2/N is neglected in the rest of the thesis for convenience.  Since DCT and  DST are orthonormal , the forward 

transform can also be realized by taking transpose of the inverse transform.  

The elements of the DCT matrix are given by   

                        CN(k,n)=cos*
 (    )  

  
+                                                          (7)         for k,n = 0,1,2,……., N-1. 

The elements of the DST matrix are given by  

                             SN (k,n)= sin *
 (    )  

  
+                                  (8)         for k, n = 

1,2,…. N. 
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The orthogonal property of DCT can be expressed as  

          CN   
   

 

  
 [ ]                                                                           (9)          

where   
    is the transpose of  CN   . 

The  orthogonal property of DST can be expressed as  

  SN   
   

 

  
 [ ]                                              (10) 

Where    
  is the transpose of   SN  and  [I] is N x N identity matrix . It can be demonstrated that the basis sets 

of  DCT and DST provide a good approximation to the eigenvectors of the normalized covariance matrix. 
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Where    is the one-step inter – element co- relation coefficient of a first order Markov process. The 

covariance matrix in the transform domain is given by  

 For DCT,   =         
                                    (12)       

For DST,          
                                                                           (13) 

Where    
     is the complex conjugate     and   

    is the complex conjugate of     . From equations (12) and 

(13), it follows that   can be computed as a two-dimensional transform of  .     

Several versions 

Several versions of the DCT and DST such as even DCT(EDCT), even DST (EDST), odd DCT 

(ODCT), odd DST ( ODST), symmetric DCT             (SDCT), symmetric DST (SDST) and Hadamard 

DCT(HDCT)  etc. have been proposed by researchers with a view to achieve optimality in performance and 

computational simplicity. Wang showed that there can be four different types of DCT and  DST, to be used in 

varied situations. The following equations denote the different versions of the DCTs and  DSTs. 
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The superscripts and subscripts represent, respectively, the type and the size of the transform. 

LITERATURE SURVEY 

      Several algorithms are reported in literature for efficient implementation of the DCT and  DST in 

general – purpose computers, and also in dedicated VLSI. In the following, we outline some of the important 

algorithms and architectures for fast implementation of the DCT and  DST in general-purpose computers.  

When Jain [19] first introduced the DST in 1976, he indicated that an N- point DST could be computed using 

a 2 N – point fast Fourier transform (FFT).  The direct computation of each version of the DSTs  requires 

about N
2
  multiplications and  N ( N-1)  additions of real numbers.  In 1978 , Narasimha and Peterson [30] 

introduced an algorithm by rearranging the input sequence so that the DCT of N- point sequence could be 

obtained through computing an N – point FFT of  rearranged sequences,  which increased the efficiency of 

computation of the DCT by more than two times . In 1986, Malvar [28] showed the DCT could be computed 

through the fast Hartley transform (FHT) of the same length.  Because the FHT is a transform of real 

sequence like DCT, they claimed that the FHT based scheme would save another 50% of computation. This 

type of fast computation of DCT has been along the line of using other  fast transforms to obtain the DCT . 

These algorithms can also be used for computation of DST. Both direct and indirect approaches have a 

common feature that they all focus on the butterfly structure and aim at reducing number of multiplications 

and additions.  Yip and Wang [39] proposed a prime-factor DST algorithm which required only real number 
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multiplications but its index mapping   was complicated. Lee [25] proposed another index mapping scheme 

for prime-factor DCT which is more efficient compared with that of Yip and Wang [39] . The input index 

mapping of Lee [25] , however, would not be feasible in variable size applications and it requires extra 

memory for constructing and combining two index tables. Chen et al. [9] developed a fast algorithm which 

provides a factor of six improvement in computational complexity when compared to conventional DCT and 

DST algorithms using the FFT . Makhoul showed the N-point DST  can be derived by taking the DFT of a 

2N-point even extension of the signal. Haque [17] developed a two-dimensional fast cosine  transform (2-D 

FCT ) algorithm for 2
m
 x 2

n
 data point.  Hou [18] presented a recursive algorithm for DCT with a structure 

that shows the generation of the higher order DCT matrices directly from the lower order DCT matrices. 

Gupta and Rao [16] developed a recursive algorithm for DST which is similar to the recursive algorithm for 

the  DCT developed by Hou [18]. Chan and Ho [4] reviewed some direct methods for computing the DCT. 

They presented a variant of Hou’s algorithm which is both in place and numerically stable. They generalized 

the method using the concept of decimation and orthogonal properties to compute the entire class of discrete 

sinusoidal transforms.  Chan and Ho [5] presented efficient methods for mapping odd-length type-II and type 

-  III  DCTs to a real – valued DFT by an  index mapping using permutations and sign changes only, and 

similar mapping  was introduced to convert type  -IV DCT to real –valued DFT up to a scaling factor. 

       Along with the growth of integrated circuit technology,  high-performance application- specific dedicated 

processors are evolving rapidly for digital signal processing applications [20,21,22,23]. The VLSI  systems 

yield high throughput of results by maximizing the processing concurrency, so that they provide less 

expensive and more suitable alternative to general – purpose computers, for real – time and on-line 

applications.  Systolic architectures are emerging as the most popular and dominant class VLSI structures due 

to simplicity of their processing elements (PEs), modularity of their structures, regular and nearest neighbor 

interconnections between the PEs, high level of pipelinability, small chip-area and low power dissipation [21]. 

In systolic architectures, the desired data are pumped rhythmically in a regular interval across the PEs, for 

yielding high throughput of result by fully pipelined processing.  A systolic system consists of a set of 

interconnected cells or PEs. Each cell is capable of performing some simple operations. Simple, regular 

communication and control structures have substantial advantages over complicated ones in design and 

implementation. Cells in a systolic system are typically interconnected to form a systolic array or systolic tree.  

Information in a systolic system flows between cells in a pipelined fashion and communication with the 

outside occurs only at the boundary cells.  The basic principle of a systolic architecture is that a single PE is 

replaced by an array of PEs so that higher computation throughput can be achieved without increasing 

memory bandwidth. Once data is brought out from the memory, it can be used effectively at each PE it passes 

while being pumped from PE to PE along the array. This is possible for a wide class of compute-bound 

computations where multiple operations are performed on each data in a repetitive manner. Synchronous 

design for pumping of data is usually preferred for reasons of simplicity. Achieving high computation 

throughput using each input data a number of times with only modest memory bandwidth is one of the many 

advantages of systolic approach.  Several systolic algorithms and architectures are, therefore, suggested in 

literature for VLSI implementation of digital filters, discrete orthogonal transforms, interpolation, convolution 

and correlation for signal processing problems. The fast algorithms for general purpose computers are, 
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however, not suitable for VLSI implementation due to global communication requirement.  Therefore, various 

algorithms and architectures have been developed for massively parallel implementation  of the DCT and  

DST in VLSI chips.  

       Chan and Ho [5, 6] and Cho and Lee [10, 11] suggested implementation of prime-factor DCT based on 

variant DCT structures which required additional complex number multiplications. Chakrabarti and Ja´Ja´ [3] 

developed a systolic architecture for implementing Lee’s algorithm [25]. They wanted to compute the DCT 

from the DHT. So they modified the index mappings which are essentially the same as Lee’s. However, they 

did not discuss the actual implementation of these index mappings. Lee and Huang [26] suggested a scheme 

for prime-factor decomposition of the DCT which involves simpler and more efficient index mapping 

compared with those of [24, 25, 36, and 37] and is devoid of complex arithmetic operations as well. Also they 

proposed two systolic architectures comprising of two matrix multiplication units and a transposition unit. 

Bit-level systolic arrays are more regular, and require simpler PEs ( comprised of only gated full adders ) 

compared with word –level PEs, so that higher throughput computation can be achieved by bit-level  systolic 

arrays. Chakrabarti and Ja´Ja´ [3] have suggested a bit level architecture for computation of prime-factor 

DCT. Mc. Govern et al. [29] suggested a bit-serial architecture for implementation of 8 x 8 point 2-D DCT 

which is not modular and requires complicated interconnections. Chau and Siu [7] proposed an algorithm for 

implementation of DCT of any general length using a recursive filter structure.  They have claimed that the 

algorithm can be implemented in a regular structure. But, due to the recursive nature of the algorithm, 

truncation error would accumulate in each stage of recursion so that the transformed output may contain 

significant amount of error. Chou and Siu [8] showed that by some suitable mappings prime-length DCT may 

be converted into two suitable transforms with approximately half the original length and the DCT may be 

converted directly into recursive filter structure that required only constant multiplier for the computation. 

Gou  et al. [15] have suggested a systolic architecture for prime-length DCT using input/output data  

permutation and symmetry  property of cosine kernels. But the over heads of this array include some 

additional shift registers, latches, multiplexers, a demultiplexer and a switching element for control 

requirement.  Sun et al. [35] have presented a regular and efficient, I.C. realization for DCT by concurrent 

architecture using distributed arithmetic and memory oriented structure.  The ROM size of this architecture 

increases rapidly with the order of the DCT so that it may be useful for implementation of the DCT of lower 

order only. Duhamel and H’Mida [14] have derived a two step algorithm that converts the DCT into a set of 

circular convolutions. A new algorithm to convert DCT to skew-circular convolution was presented by Li 

[27] because VLSI implementation of distributed arithmetic is very efficient for computing convolutions. Duh 

and Wu [13] presented a two stage algorithm and its corresponding architectures for efficient computation of 

a power-of-two length DCT in which the transform matrix is decomposed into the product of two matrices, 

the preprocessing and the postprocessing ones.  

      A detailed study of the available literature reveals that possibly new algorithms may be developed for 

implementing the DCT and DST in dedicated VLSI more efficiently compared with the existing algorithms.  
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