
STM32 Based Real Time Parameters display on Real
Time Video
Meghanand A. Bhamare

Department of Electronics and Communication
Amity University Mumbai, Bhatan, Panvel, Maharashtra,India

mabhamare@mum.amity.edu

Abstract—This paper discuss about implementation of the real
time parameters like speed, temperature, pressure, distance on
the real time video. Here the parameter value is embedded with
the images coming from the camera and then displayed over
LCD. To do this we make changes in the Bitmap of image being
received from the camera. This application is developed on
STM3240G-EVAL board using onboard peripherals.

Keywords – STM32F4, DCMI, DMA, FSMC,NDTR

I Introduction
This application is developed on STM3240G-EVAL board
using onboard peripherals and interfaces like DMA, FSMC
DCMI, SRAM, Camera and LCD. First, image is captured
from camera interfaced with STNM32 using DCMI interface
of STM32F4[1]. One channel of DMA works as a data link
between DCMI (taking data from camera) and external SRAM
which is interfaced with the STM32 using FSMC. Images is
processed by STM32 as per requirement and and with the help
of another channel of DMA it will be displayed on LCD.
Camera can be operated in two modes i.e. Snapshot mode or
continuous image capturing mode. In former case we need to
enable the image capturing command of DCMI (since the
capturing stops automatically once one image is captured
completely) when current image is processed and displayed on
LCD. Whereas in latter case the image is captured
continuously and we process and display the image in active
period of Vsynch (Vsynch signal is responsible for image
capturing). Regarding the display of text over image user can
have control over font selection and color. Any data coming
from a sensor or any other varying data can also be displayed
in real time.

II Hardware used

The STM3240G-EVAL evaluation board is a complete

demonstration and development platform for the STM32F4

series and includes an embedded STM32F407IGH6 high-

performance ARM®Cortex™-M4F 32-bit microcontroller[2].

The full range of hardware features on the board is provided

to help evaluate all peripherals (USB-OTG HS, USB-OTG

FS, Ethernet, motor control, CAN, MicroSD Card™,

smartcard, USART, Audio DAC, RS-232, IrDA, SRAM,

MEMS, EEPROM… etc.) and develop your own applications.

Extension headers make it possible to easily connect a

daughterboard or wrapping board for your specific

application. The in-circuit ST-LINK/V2 tool can be easily

used for JTAG and SWD interface debugging and

programming.

III Software overview
1) Initializing system:

DMA Setting: - Direct memory access (DMA) is used in order
to provide high-speed data transfer between peripherals and
memory and between memory and memory. In STM32F4 we
have two DMA
controllers which have 16 streams in total (8 for each DMA
controller), each dedicated to managing memory access
requests from one or more peripherals. Here we are using
DMA2 stream1 is used as a data link between Camera and
SRAM and DMA 2 stream 4 is used between SRAM and
LCD.
Each DMA transfer consists of three operations:
1. Loading from the peripheral data register or a location in
memory, addressed through the DMA_SxPAR or
DMA_SxM0AR register.
2. Storage of the data loaded to the peripheral data register or
a location in memory addressed through the DMA_SxPAR or
DMA_SxM0AR register.
3. Post-decrement of the DMA_SxNDTR register, which
contains the number of transactions that still have to be
performed.
Whenever a complete frame of image is captured we First
disable the DMA2_Stream1 (Primary Channel) in order to
read NDTR (no of data transfers remaining) Register and
avoid any unwanted data transaction from DCMI to SRAM
using DMA2 Stream1. Also disable the DMA2 Stream4 in
order to configure it.

2) DCMI Setting:
The DCMI is used to receive data from CMOS camera
module[4]. The digital camera interface uses two clock
domains PIXCLK and HCLK. The signals generated with
PIXCLK are sampled on the rising edge of HCLK once they
are stable. An enable signal is generated in the HCLK domain,
to indicate that data coming from themcamera are stable and
can be sampled. The maximum PIXCLK period must be
higher than 2.5 HCLK periods. The data flow is synchronized
either by hardware using the optional HSYNC (horizontal
synchronization) and VSYNC (vertical synchronization)
signals.

3) DCMI interrupt handling:-

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:261

As mentioned earlier that the DCMI / Camera is operated in
one of the two modes i.e. Snapshot and continuous capture
mode. If DCMI in set to run in snapshot mode. In this mode, a
single frame is captured (CM = ‘1’ in the DCMI_CR register).
After the CAPTURE bit is set in DCMI_CR, the interface
waits for the detection of a start of frame before sampling the
data. The camera interface is automatically disabled
(CAPTURE bit cleared in DCMI_CR) after receiving the first
complete frame. An interrupt is generated (IT_FRAME) if it is
enabled. In case of an overrun, the frame is lost and the
CAPTURE bit is cleared. When a frame is completed properly
a frame complete interrupt is generated after receiving the
interrupt we first clear the interrupt. Length of image captured
is calculated using NDTR register of primary As DMA is used
in between peripheral and memory hence maximum transfer
will depend on completed transfer multipliedby peripheral
data width. NDTR contains remaining transfers so if we
subtract if from maximum count we will get completed
transfers and each transfer is of 4 bytes. So
Data Transferred = ((0xFFFF - NDTR_value) *
Perip_Data_Width)
DMA will continue to transfer data flow from Camera to
Memory till complete image is not captured. Image capture

4) Flowchart

flag is used to indicate image is captured and stored in to
memory. Calculate length of the image captured based on
Image captured flag status. Then set DMA2 stream4
peripheral address as intended RAM address. Start making
changes in image to display intended change. Enable DMA 2
stream 4 to display image on LCD. We use high interrupt
status register HIFCR to check stream transfer complete
interrupt flag. When it is set by hardware clear it and disable
DMA 2 stream 4 to read NDTR register. Calculate the value
of Data Transferred in this
Transaction and increment the counter accordingly by using
the formula.
Data Transferred = ((0xFFFF - NDTR_value) *
Perip_Data_Width)
In this case it will be 2 bytes as for LCD has 16 bit register.
Transfer complete image with maximum transfer permitted is
64K at a time destination address to DMA, which will be
starting address of memory added with length of the
transferred image. Continue this until length of the captured
image is greater than length of image transferred to LCD.
Enable DMA 2 stream 4 to update registers. When complete
image is transferred then disable DMA2 stream4 and enable
DMA2 stream1 so as to capture next image

Yes

Start

Initialize the system

Enable Primary channel

Image capture command

Frame Capture interrupt came

In snapshot mode: -Disable Primary Channel and image capture is disabled automatically
In Continuous mode: - No need to disable primary channel, image capture command for next
image

Calculate image length

Configure secondary channel

Make changes in the image for displaying text

Enable secondary channel to display image

Check for image

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:262

5) Image modification:

A function is called to display a string along with location on

LCD(X and Y co-ordinates)[3]. Intended font size for the text

which is already decided is also passed through another

function. Let us say font size is 16x24 where 24 is height of

the character and 16 is width. It means if we refer to ASCII

table for the same we can see 24 half words in the matrix,

each one for one row. Character will be written as row to

column approach means first half word in first row then next

half word in next row and so on. Next thing will be to decide

exact pixel location on LCD out of 153600 places

(320*240*2). A function is called to decide the same based on

condition that original co-ordinates passes to string location

are less than maximum size of the screen. Location is decided

based on following formula.

Location= ((X*320 + Y)*2);

For ex. If we want to write a character on location {10, 10}

then pointer has to travel maximum width of 320 per X

location and when it reaches to respective row, it has to travel

respective column which is decided by Y. This will provide

location for first pixel of first character.

Then we have to decide exact change at this location of image

buffer. For that first we need to access first word of ASCII

table for the same character. The respective word which has

16 locations will be masked with 0x0001 for every location

and it will be decided whether respective pixel has to be

modified or not. For Example if first word is 0xFFFF then it

will be masked with 0x1 for every bit position and we come to

know that every bit is 1 so all the pixels has to be modified.

Modification means fill respective pixel location with color.

For ex. if we want to use white color then pixel will be

modified to 0xFFFF. Increase location to next value while

keeping in mind maximum size of the column

Continue this procedure for all remaining words of the

character ASCII table. Means take next word from table and

find individual mask value for every bit and if it is ‘1’ then

modify respective location for given color. This will modify

one character in the image at given location. Then we move to

next character keeping in mind that when we write next

character it should have sufficient location (minimum 16

columns and 24 rows) to appear completely. If it reaches to

end of column we move on to next row and start writing fresh

character. If it’s end of all rows and columns then writing

starts from first line.

IV Results

1) Timing Analysis:

Following table summarizes timing calculation for different sections

of the program.

Pin No Computed for Time

PG8 Text Writing 4.9ms

PC7 DCMI Interrupt 139ms

PI9 Time required to

capture one image

(Primary Channel

enabling to disabling)

121ms

PG6 Time to Display

modified image

13ms

Total Time Complete Loop 139ms

CN2 (6) PCLK - DCMI 18MHz

CN4(4) VSYNC - DCMI 64ms(high time) @ 14

Hz

CN2(36) HYSNC-DCMI 43uS(high time) @

4Khz

CN19/CN1(3) WR-FSMC 5.8MHz

C19/CN1(4) RD-FSMC 5.8MHz

2) Sample result
This picture shows snapshot of a video, where different
parameters can be displayed on a video. Parameters value
changes in real time and same gets modified on the video.

I References
[1] STM32F40XX Series Datasheet, STMicroelectronics, May 2012
[2]RM0090 STM32F40XX Series Reference manual, STMicroelectronics,
Sep. 2011
[3]AN3241 Application Note, STMicroelectronics, July 2010
[4]UM1461 User Manual, STMicroelectronics, April 2012

V Conclusion
To display a real time parameter over video is always a
challenge for maintaing frame rate. With the proposed

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:263

algorithm it is possible to achieve frame rate around 8. As per
DCMI theory VSYNC signal plays important role in capturing
image and it can be noted that a frame is lost in case overrun.
It happens as DCMI is set in snapshot mode and it is not
enable till complete image is not captured, modified and
displayed. So from timing analysis it can be observed that lot
of time is wasted during capture of single image as DCMI is
idle once image is captured till it is not being modified and
displayed. Frame rate can be improved with the help of double
buffer management.

International Journal of Management, Technology And Engineering

Volume 8, Issue VI, JUNE/2018

ISSN NO : 2249-7455

Page No:264

