
Abstract—with cloud storage services,

users can remotely store their data to the

cloud and realize the data sharing with

others. Remote data integrity auditing is

proposed to guarantee the integrity of the

data stored in the cloud. In some common

cloud storage systems such as the

Electronic Health Records (EHRs) system,

the cloud file might contain some sensitive

information. The sensitive information

should not be exposed to others when the

cloud file is shared. Encrypting the whole

shared file can realize the sensitive

information hiding, but will make this

shared file unable to be used by others.

How to realize data sharing with sensitive

information hiding in remote data integrity

auditing still has not been explored up to

now. In order to address this problem, we

propose a remote data integrity auditing

scheme that realizes data sharing with

sensitive information hiding in this paper.

In this scheme, a sanitizer is used to

sanitize the data blocks corresponding to

the sensitive information of the file and

transforms these data blocks’ signatures

into valid ones for the sanitized file. These

signatures are used to verify the integrity of

the sanitized file in the phase of integrity

auditing. As a result, our scheme makes the

file stored in the cloud able to be shared

and used by others on the condition that

the sensitive information is hidden, while

the remote data integrity auditing is still

able to be efficiently executed. Meanwhile,

the proposed scheme is based on identity-

based cryptography, which simplifies the

complicated certificate management. The

security analysis and the performance

evaluation show that the proposed scheme

is secure and efficient.

1. INTRODUCTION

With the explosive growth of data, it is a

heavy burden for users to store the sheer

amount of data locally. Therefore, more and

more organizations and individuals would

like to store their data in the cloud.

However, the data stored in the cloud might

be corrupted or lost due to the inevitable

Enabling Identity-Based Integrity Auditing and Data Sharing with

Sensitive Information Hiding for Secure Cloud Storage

1T.Vijayalakshmi giri 2Mr.N.Naveen Kumar

1M.Tech Student, School of Information Technology JNTUH, Kukatpally, Medchal-Malkajigiri,

Hyderabad.

2Assistant Professor, School of Information Technology JNTUH, Kukatpally, Medchal-

Malkajigiri, Hyderabad.

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 313

software bugs, hardware faults and human

errors in the cloud [1]. In order to verify

whether the data is stored correctly in the

cloud, many remote data integrity auditing

schemes have been proposed [2–8]. In

remote data integrity auditing schemes, the

data owner firstly needs to generate

signatures for data blocks before uploading

them to the cloud. These signatures are used

to prove the cloud truly possesses these data

blocks in the phase of integrity auditing.

And then the data owner uploads these data

blocks along with their corresponding

signatures to the cloud. The data stored in

the cloud is often shared across multiple

users in many cloud storage applications,

such as Google Drive, Dropbox and iCloud.

Data sharing as one of the most common

features in cloud storage, allows a number of

users to share their data with others.

However, these shared data stored in the

cloud might contain some sensitive

information. For instance, the Electronic

Health Records (EHRs) [9] stored and

shared in the cloud usually contain patients’

sensitive information (patient’s name,

telephone number and ID number, etc.) and

the hospital’s sensitive information

(hospital’s name, etc.). If these EHRs are

directly uploaded to the cloud to be shared

for research purposes, the sensitive

information of patient and hospital will be

inevitably exposed to the cloud and the

researchers. Besides, the integrity of the

EHRs needs to be guaranteed due to the

existence of human errors and

software/hardware failures in the cloud.

Therefore, it is important to accomplish

remote data integrity auditing on the

condition that the sensitive information of

shared data is protected.

2. RELATED WORK

[2] Provable Data Possession at Untrusted

Stores

We introduce a model for provable data

possession (PDP) that allows a client that

has stored data at an untrusted server to

verify that the server possesses the original

data without retrieving it. The model

generates probabilistic proofs of possession

by sampling random sets of blocks from the

server, which drastically reduces I/O costs.

The client maintains a constant amount of

metadata to verify the proof. The

challenge/response protocol transmits a

small, constant amount of data, which

minimizes network communication. Thus,

the PDP model for remote data checking

supports large data sets in widely-distributed

storage systems. We present two provably-

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 314

secure PDP schemes that are more efficient

than previous solutions, even when

compared with schemes that achieve weaker

guarantees. In particular, the overhead at the

server is low (or even constant), as opposed

to linear in the size of the data. Experiments

using our implementation verify the

practicality of PDP and reveal that the

performance of PDP is bounded by disk I/O

and not by cryptographic computation.

We focused on the problem of verifying if

an untrusted server stores a client’s data. We

introduced a model for provable data

possession, in which it is desirable to

minimize the file block accesses, the

computation on the server, and the client-

server communication. Our solutions for

PDP fit this model: They incur a low (or

even constant) overhead at the server and

require a small, constant amount of

communication per challenge. Key

components of our schemes are the

homomorphic verifiable tags. They allow to

verify data possession without having access

to the actual data file. Experiments show

that our schemes, which offer a probabilistic

possession guarantee by sampling the

server’s storage, make it practical to verify

possession of large data sets. Previous

schemes that do not allow sampling are not

practical when PDP is used to prove

possession of large amounts of data. Our

experiments show that such schemes also

impose a significant I/O and computational

burden on the server.

[4] Compact Proofs of Retrievability

In a proof-of-retrievability system, a data

storage center must prove to a verifier that

he is actually storing all of a client’s data.

The central challenge is to build systems

that are both efficient and provably secure

— that is, it should be possible to extract the

client’s data from any prover that passes a

verification check. In this paper, we give the

first proof-of-retrievability schemes with full

proofs of security against arbitrary

adversaries in the strongest model, that of

Juels and Kaliski. Our first scheme, built

from BLS signatures and secure in the

random oracle model, features a proof-of-

retrievability protocol in which the client’s

query and server’s response are both

extremely short. This scheme allows public

verifiability: anyone can act as a verifier, not

just the file owner. Our second scheme,

which builds on pseudorandom functions

(PRFs) and is secure in the standard model,

allows only private verification. It features a

proof-of-retrievability protocol with an even

shorter server’s response than our first

scheme, but the client’s query is long. Both

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 315

schemes rely on homomorphic properties to

aggregate a proof into one small

authenticator value.

3. FRAMEWORK

The system model involves five kinds of

different entities: the cloud, the user, the

sanitizer, the Private Key Generator (PKG)

and the Third Party Auditor (TPA), as

shown in Fig.1.

Fig.1. The system model

(1) Cloud: The cloud provides enormous

data storage space to the user. Through the

cloud storage service, users can upload their

data to the cloud and share their data with

others.

(2) User: The user is a member of an

organization, which has a large number of

files to be stored in the cloud.

(3) Sanitizer: The sanitizer is in charge of

sanitizing the data blocks corresponding to

the sensitive information (personal sensitive

information and the organization’s sensitive

information) in the file, transforming these

data blocks’ signatures into valid ones for

the sanitized file, and uploading the

sanitized file and its corresponding

signatures to the cloud.

(4) PKG: The PKG is trusted by other

entities. It is responsible for generating

system public parameters and the private

key for the user according to his identity ID.

(5) TPA: The TPA is a public verifier. It is

in charge of verifying the integrity of the

data stored in the cloud on behalf of users.

The user firstly blinds the data blocks

corresponding to the personal sensitive

information of the file, and generates the

corresponding signatures. These signatures

are used to guarantee the authenticity of the

file and verify the integrity of the file. Then

the user sends this blinded file and its

corresponding signatures to the sanitizer.

After receiving the message from the user,

the sanitizer sanitizes these blinded data

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 316

blocks and the data blocks corresponding to

the organization’s sensitive information, and

then transforms the signatures of sanitized

data blocks into valid ones for the sanitized

file. Finally, the sanitizer sends this sanitized

file and its corresponding signatures to the

cloud. These signatures are used to verify

the integrity of the sanitized file in the phase

of integrity auditing. When the TPA wants

to verify the integrity of the sanitized file

stored in the cloud, he sends an auditing

challenge to the cloud. And then, the cloud

responds to the TPA with an auditing proof

of data possession. Finally, the TPA verifies

the integrity of the sanitized file by checking

whether this auditing proof is correct or not.

4. EXPERIMENTAL RESULTS

We evaluate the performance of the

proposed scheme by several experiments.

We run these experiments on a Linux

machine with an Intel Pentium 2.30GHz

processor and 8GB memory. All these

experiments use C programming language

with the free Pairing-Based Cryptography

(PBC) Library [10] and the GNU Multiple

Precision Arithmetic (GMP) [11]. In our

experiments, we set the base field size to be

512 bits, the size of an element in Z∗ p to be

|p| =160 bits, the size of data file to be

20MB composed by 1,000,000 blocks, and

the length of user identify to be 160 bits.

Fig.2. The computation overhead of the TPA

in the phase of integrity auditing.

Fig.3. The computation overhead of the

cloud in the phase of integrity auditing

5. CONCLUSION

In this paper, we proposed an identity-based

data integrity auditing scheme for secure

cloud storage, which supports data sharing

with sensitive information hiding. In our

scheme, the file stored in the cloud can be

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 317

shared and used by others on the condition

that the sensitive information of the file is

protected. Besides, the remote data integrity

auditing is still able to be efficiently

executed. The security proof and the

experimental analysis demonstrate that the

proposed scheme achieves desirable security

and efficiency.

REFERENCES

[1] K. Ren, C. Wang, and Q. Wang,

“Security challenges for the public cloud,”

IEEE Internet Computing, vol. 16, no. 1, pp.

69–73, Jan 2012.

[2] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D.

Song, “Provable data possession at untrusted

stores,” in Proceedings of the 14th ACM

Conference on Computer and

Communications Security, ser. CCS ’07,

2007, pp. 598–609.

[3] A. Juels and B. S. Kaliski, “Pors: Proofs

of retrievability for large files,” in

Proceedings of the 14th ACM Conference

on Computer and Communications Security,

ser. CCS ’07, 2007, pp. 584–597.

[4] H. Shacham and B. Waters, “Compact

proofs of retrievability,” J. Cryptology, vol.

26, no. 3, pp. 442–483, Jul. 2013.

[5] C. Wang, S. S. M. Chow, Q. Wang, K.

Ren, and W. Lou, “Privacy-preserving

public auditing for secure cloud storage,”

IEEE Transactions on Computers, vol. 62,

no. 2, pp. 362–375, 2013.

[6] S. G. Worku, C. Xu, J. Zhao, and X. He,

“Secure and efficient privacy-preserving

public auditing scheme for cloud storage,”

Comput. Electr. Eng., vol. 40, no. 5, pp.

1703–1713, Jul. 2014.

[7] C. Guan, K. Ren, F. Zhang, F.

Kerschbaum, and J. Yu, “Symmetric-key

based proofs of retrievability supporting

public verification,” in Computer Security –

ESORICS 2015. Cham: Springer

International Publishing, 2015, pp. 203–223.

[8] W. Shen, J. Yu, H. Xia, H. Zhang, X. Lu,

and R. Hao, “Light-weight and privacy-

preserving secure cloud auditing scheme for

group users via the third party medium,”

Journal of Network and Computer

Applications, vol. 82, pp. 56–64, 2017.

[9] J. Sun and Y. Fang, “Cross-domain data

sharing in distributed electronic health

record systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 21,

no. 6, pp. 754–764, June 2010.

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 318

[10] B. Lynn, “The pairing-based

cryptographic library,”

https://crypto.stanford.edu/pbc/, 2015.

[11] “The gnu multiple precision arithmetic

library (gmp),” http://gmplib.org/.

International Journal of Management, Technology And Engineering

Volume IX, Issue II, FEBRUARY/2019

ISSN NO : 2249-7455

Page No: 319

