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the some of the known results.
keywords: Fixed points; rectangular metric spaces; a, 77  Geraghty contraction.
AMS(2010) Mathematics Subject Classification: 47H10, 54H25.
1. Introduction and Preliminaries
Banach contraction principle is one of the fundamental results in fixed point theory . There are
several generalizations of metric spaces . In 2000 Braniciari generalized metric spaces , in which
triangular inequality is replaced by quadrilateral inequality which is known as rectangular metric spaces.
1. Rectangular metric spaces need not be continuous.
2. Inrectangular metric space, a convergent sequence need not be a Cauchy sequence.
3. Rectangular metric spaces need not be a Haussdorff space.
Definition 1.1 [3] Let X be a nonempty set. A function d : X xX — [0, «) satisfy the following
conditions for all x,y € X and all distinct u, v € X each of them different from x and y
(i d (x,y) =0 ifandonlyifx=y
(i) d (x,y)=d (y,x), and
(iii) d (x,y)<d (x,u)+d (u,v) +d (v,y). (quadrilateral inequality)
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Then the function d is called a rectangular metric and the pair (X, d) is called a rectangular metric space
(in short RMS).

Definition 1.2 [3] Let (X, d) be a rectangular metric space (in short RMS) and {x,} be a sequence in
X.

(){x.} iscalled (g.m. s) convergent to a limit x ifand only if d(XyX) > 0 asn — o.

(i) {xn} is called (g.m. s) Cauchy sequence if and only if for every e> 0 there exists positive integer
N(e) such that d(x, Xy) < € for all m>n > N(e).

(iv)  Arrectangular metric space (X, d) is called complete if every (g.m.s) Cauchy sequence is
a (g. m.s) convergent.

Definition 1.3 ([12]) A function : R* — R*, R" = [0, «) is said to be an altering distance
function if the following conditions hold:

(i) ¢ is continuous,
(ii) ¢ is non-decreasing, and

(iii) @ (t)=0ifand only ift=0.
In 1973, Geraghty [8] introduced a new contractive mapping in which the contraction constant was
replaced by a function having some specific properties taken from the class of functions S, where
S={p:[0,0) > [0.)/ Bty) >1 =1tn >0 }

Definition 1.4 . [13] Let T: XxX be a self map and a: XxX — Rbeafunction. ThenT is said to be a
— admissible function if a(x, y) >1 implies o(Tx, Ty) >1.

Definition 1.5 . [13] Let T: XxX be a self map on a metric space (X, d) and a, 77: XxX — [0, «) be
two functions. Then T is said to be o — admissible mapping with respectto 7 if a(x, y) > 77 (X,y)
implies o(Tx, Ty)>n (Tx, Ty) forallx,ye X.

If n(x,y)=1forall x,y € X, then T is called a- admissible mapping.

Definition 1.6. Let (X, d) be a rectangular metric space and let T: X — X be a self map. If there exists
e Ssuchthat d(Tx, Ty) < B(e(M (X, y) Do(M (X, Y))

_ 1 1
Where M(X, y) = max{ d(y). dxx), 0T g0y X TR0 g

forall x, y e Xthenwe call T isa oy - generalized Geraghty contraction in rectangular metric spaces.

[d (,Td(y,Ty) }

Lemma 1.10. [2] Let (X, d) be metric space. Let {x,} be a sequence in X such that d(Xn.1, Xn) —
0 as n — oo. If {X,} is not a Cauchy sequence then there exist an ¢ > 0 and sequences of positive
integers {m(k)} and {n(k)} with n(k) > m(k) > k and d(Xm@, Xnx) > €. For each k > 0,
corresponding to m(k), we can choose n(k) to be the smallest integer such that d(Xmg, Xnw) > €
and d(Xmg, Xn 1) < €. It can be shown that the following identities are satisfied.

(i) lim dxnw, Xme) = & (i1) lim d(xg -1, Xmgo+1) = &,

(iii) lim d(Xago1, Xmo) =€, and (iv) limd(Xago, Xmgos1) = &-
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Now, we prove the existence of fixed points of generalized Geraghty contraction maps with rectangular
metric spaces .

2. MAIN RESULTS
Theorem 2.1. Let (X, d) be a Hausdorff and complete rectangular metric space. Let T: X - X be an
a- admissible mapping with respect to 77 . Assume that there exists an altering distance function ¢ such
that x,y €X,
a(x, y)zq(xy), implies d(x,y) < Ble( M(x,y)e( M(x,y)) 21.1

_ 1 1
where M(X,y) = max{ d(y), dxTx). d(y,Ty),l+d(X‘y) [d (x T (Y, Ty), m[d xTXd(y,Ty) }

Also, suppose that the following assertions are hold; Geraghty contraction. Suppose that
() there exists X, € X such that a (xo, TXg) > 1] (Xo, TXo)
(i) forallx,yeX, akx, y)>1 (x,y)and o (y, z) > 1 (y, z) implies o (x, z) > 1] (X,Z)
(ili) T is continuous.

Then T has a periodic pointa e Xand « (x, Ta) > 717 (a, Ta ) holds for each periodic point then T has
a fixed point.

Proof. By (1), there exists X, € X such that o (X, TXo) >77 (Xo, TXo). 2.1.2
We define {x,} in X by X, = Tx,.1= T"%, for n=1,2,3,... .
If X, = X1 fOr some n € N, then x, = Tx, and hence x, is a fixed point of T. Hence, without loss of
generality, we assume that X, # X1 forall ne N.
Since T is a admissible mapping with respect to 77 and consider 2.1.2

we have
a (X1, X2) = o (TXo, T?Xo)

> 77 (TXo, T?X0) = 77 (X1, X2) -
By mathematical induction,
it is easy to see that o (Xn, Xne1) = 77 (Xn, Xne1) fOralln e N.

We consider deq, xns1) = o d(Txq -1 Txn)
S a(xn’ Xn+1) (D(Txn' TXn+1)

S ﬂ((ﬂ( M (Xn—l’ Xn )))@( M (Xn—l’ xn )) (213)
Now
M (0 %) = maxg dx, s ), 40, %), 06, X,) m[d(xﬂ, x)d (%, X, m[d(xw x)d (%, %)}
<max [{ 06 3,5, 0% %) s ——[d (%, 1 X, 0 Xy )] [ (%, %) (%, X, )T
n-. n n N+ 1+ d (Xnil, Xn) n-. n n n+. l+ d (Xn , Xn+1) n-—. n n n+.

= max [{d(X, 5, %), d(X;, %) }
If max{d(x,,, X,), d(x,, X,,;)}= d(x,, X,,;) thenfrom (2.1.1), we have
(A (X, %,.1)) < Blo(M (X1, X ) (@(M (X, 1, X,))
< oM (X, 1, X,))(@(d (X, 1, X,))
< @(d(X,,X,,1)), acontradiction.
So that we have max{ d(x, ,, X,), d(X,, X,..)}= d(X,,, X,), and hence
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gD(d (Xn’ Xn+l)) S ﬂ(q)(M (anl’ Xn )))(?(M (anl’ Xn )) for a” n
< gﬂ(d (Xn—l’ Xn ))

Thus it follows that { ¢(d(X,, X,.,)) } is a decreasing sequence of non negative reals and so
lim, ., o(d(X,,X,,,)) existsand itis r(say). i.e., lim_,_ e(d(x,, X)) =r=0.
We now show that r = 0.
If r > 0 then from 2.1.3

(p(d(xn' xn+1)) = (p(d(Txn—l; Txn))

< BoM(xp_1,x,))) (M (Xp_1, X))

< .8(¢(M(xn—1v xn)))(p(d(xn—l' xn))a and hence

¢(d(xn ) xn+1))
@) < B(eM(xy_1,x,))) <1 foreachn > 1.

Now on letting n — o, we get
i) < jim B (M (g, %)) < 1

@0 (Xn—1,%n)
So that (@ (M (x,-1,%,))) = 1asn — oo,
This implies that 111im (M (xp_1,%x4))) = 0.

Since cp(d(xn_l,xn)) < (p(M(xn_l,xn)) for all n,we have
7111_1)130 (q)(d(xn:xrwl))) < 1111—r>rolo ((p(M(xn—l:xn))) = 0.
Hence rllim (p(d(xn, Xn+1)) = 0.i.e., 7 = 0.

1 =1lim,_,

Now we prove that ¢(d(X,, X,,,) >0 as n — .
p(d0On, Xn+2) = o( d(MXn-1, TXn41))

< o(MX, g0 TXo1)
< Ple( M (X1, X))@ M (X, 10 X0.1)) (2.1.4)
Now
MO8 00 = M0G0, 806100, 800 %0) g T80 %0800 %)) g T06 1 )30 5,

< max |{ d (Xn—l’ Xn+1)’ d (Xn—l’ Xn) ! d(Xn+1’ Xn+2) ’[d (Xn—l' Xn)d(xml’ Xn+2)] ’[d(xn—l’ Xn)d (Xn+1' Xn+2)]}
= max |{ d(xn—l’ Xn)’ d(xn ' Xn+l) }

Since @(d (X, X..,)) <@ (d(x, ,, x,)) itfollowsthat d(x,, X, ,) <d(X ,, X,)

Therefore M(X_,, X.,) <max{d(X _,, X.,), d(X,_;, X.), [d(X,_,, X ), [d(X, ., X))’}

<max{d(x,,, X,,,), d(X. ., X,), [d(X,,, xn)]z}

Let a, =d(X,,, X,,;) and b=d(x,, X,).

Thus M(x,, x )= max{a,, b, [b, J* } for eachn>N.

Here we have three cases. If M(x,; X ) <b, or M(x, x ) < b, 1.

Since b, >0as n— oo from2.1.4

Iimn—>ao ¢(d (Xn’ Xn+2) S Iimn—)oo ﬂ(¢(M (anli Xn+1)))¢(M (anli Xn+1)) :O'
If M(x,, X )< &, thenwe see that

(D(d (Xn’ Xn+2) < ﬂ((ﬂ(M (Xn—1' Xn+1)))§0(M (Xn—l’ Xn+1)) < (D(d (Xn—l’ Xn+1) .
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Thus, the sequence {d (X, X.,,)} is adecreasing sequence of non-negative real numbers and hence
d(x,, X,,,)—0 as n—oo. 2.15
Now, we claim that T has a periodic point. Assume that T has no periodic point, then {x,} isa
sequence of distinct points, that is x, # x,, forall m=n. In this case we will get that {x .} isag.m.s
Cauchy sequence. If not, then there exists € >0 for which we can find two subsequences {Xm(k)} and
Koyt of {x,} m(k) >n(k) >k foreach k>N , such that
d (xm(k) , xn(k)) >¢ and d (Xm(kH, Xn(k)) <&
{x,} is a sequence of distinct points, then from rectangular inequality , we have
&= d(Xm(k)’Xn(k))

< d Xy s Xag-2) + 9 X2 Xno-1) + 9Ky s Xogy)

= d(xm(k) , Xn(k)-z) + d(Xm(k)—Z’Xm(k)—l) + &
Thus, lim, d(xm(k),xn(k)) =&
Using rectangular inequality we have lim,__ d (X1, X,01) = &
From2.14 ¢ < d(xm(k) , xn(k))

<BpM (Xm(k)—l’ Xn(K)—l))) p(M (Xm(k)—l’ Xn(K)—l))

Where

1 1
M (Xm(k) 1 Xn(k) 1) =max{ d(xm(k) 1 %n(k) D d(xm(k) 11 Xm(k))v d(xn(k) 1 Xn(k))'

A Xuio10 Xomio ) d K19 X )]s L Kio1 Xt ) d Kegr 29 X
1+d(Xm(k),1,Xn(k),1)[ ( 'm(k)-1 k)) ( (k)L (k))] 1+d(Xm(k)an(m) [ ( (k)1 k)) ( (k)1 (k))]}

On letting k =
lim_,, M (Xm(k)—l’ Xn(K)—l) =&
Now, we have
@ (d(xm(k), xn(k))) <P (fp (M(xm(k—l), xn(k)—l))) OM (X i)-1, Xnk)-1))
<B (§0 (M(xm(k—l), xn(k)—l))) @M (Xmk-1), Xn(-1))

<B (QD (M(xm(k—l), xn(k)—l))) @ (d(Xm(k-1), ¥n(k)-1))
And hence

@ (d(Xm), X)) (
' < B (0 (MQmpeesy, Xngio) ><1_
(P(d(xm(k)_L xn(k)—1) ( ( m(k—1), Xn(k) 1))

On letting k — oo and from the Lemma 1.11, we get

1= 29 i Bl M Gy, X)) < 1
o = K mk=1), n(0-1))) =

So that 8 ((p (M(xm(k_l)l xn(k)_l))> - lask — oo

SincefES, @ (M(xm(k_l), xn(k)_l)) —»0ask - w.ie.,pl)=0,
Since ¢ is continuous. Hence it follows that € = 0, a contradiction.

Therefore {x,} is a Cauchy g.m.s. sequence in X, and since (X,d) is complete, there exists z € X such
that {X,} is g.m.s convergent to z,
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Now, we show that z is a fixed point of T.
First we assume that (iii) hold. i.e., T is continuous.

Xoy = TX, > Tz as N—

and since X is Hausdorff we have z=Tz.
Therefore z is a fixed point of T in X.

Theorem 2.2. Let (X, d) be a Hausdorff and complete rectangular metric space. Let T: X = X be an
a- admissible mapping with respect to 77 . Assume that there exists an altering distance function ¢ such

that x,y €X,
a(x, y)zn(xy), implies d(x,y) < Ble( M(X,y))e( M(X,Y)) 221
where M(x,y) = max{ d(y), dxTx), d(y,Ty),lerl(X‘ 510 0TI, Wlxﬁy)[d *TXd(y.Ty) }

Also, suppose that the following assertions are hold. Suppose that
(i) there exists Xy € X such that a (xo, TXo) = 17 (Xo, TXo)

(i) forallx,yeX, akx, y)>1n (x,y)and o(y, z) > 1 (y, z) implies o (x, z) > 1] (X,Z)
(ili)  Xis a-regular with respectto 7.

Then T has a periodic pointa € X and a (x, Ta) > 17 (a, Ta ) holds for each periodic point then T has
a fixed point. Moreover, if for all x,y € F(T), we have o (x, y) > 17 (X, ¥ ), then the fixed point is
unique.

Proof. From the proof of the theorem2.1, we have the sequence {x,, }defined by {x,,,1} = Tx,, forall
n > 0isa Cauchy in ( X, o) and convergesto tosome z € X .
Let X be a-regular with respect 7

Also 2.1.3 we have a(X,,z) = n(X,,2) , forall n>N.

p(d(Tx,, T2)) < B(@(M(x,,2))) p(M (X,,Z)) (22.1)
Where
1 1
M(x,,2z) =max{d(x,,z), d(X,,X,.,), d(z,Tz). m[d(z,Tz)d(z,Tz)}, m[d(zﬁz)d(xn,xnm)]}

since {X,} — Z as N —> o, then we have

lim,, M(x,,z)<d(z,Tz)

Taking limitas n — oo, from 2.2.1 and using the continuity of ¢ we get
¢(d(z,72))< Blp(M(X,,2))) (M (X,,2))

Which implies that ¢(d(z,Tz)) =0 implies that d(z,Tz) =0 and so z= Tz.

Hence T has a periodic point,
Now we show that T has a fixed point.

There exists a € X suchthat a=T "a. Itis clearthat a e X is a fixed point of T for p=1.

We will prove that =T ""a s a fixed point of T. In case of p>1. If possible, assume the contrary,
ie,let TP a=TPa .
As «a(a, Ta) >n(a,Ta) and Tis a admissible w.r.t 7
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we have a(T"a, T"Ta) >n (T"a, T"Ta) forall ne N .

From 2.2.1, we have

o(d(a,Ta))= (d(T’a, T Ta)) < B(e(M(T"a,T "a))) (M (T *"a,T "a))
Where

M (T "*a, TPa) = max{ d(T"*a, TP a), d(T""a, T a),d(T"a, T""a), L ) [d(T""a, TPa)d(T " a, T""a)],

1+d(T""a, T’a
= max{d(T"*a, TP a),d(T"a, T""a)}

If M(TP"a, T"a) =d(T"a, T""a), then we get contradiction.

Sothat M(T"™a, TPa) =d(T""a, T"a)

p(d(a,Ta))= o(d(T "a, T Ta)) < Blp(M (T *a, T’a))p(d(T *a, TPa))< d(T"'a, TPa)

p(d(a,Ta)) < p(d(TP"a, TPa))<e(d(T’?a, T"'a)) < ... <p(d(a, Ta))

Since ¢ is continuous it follows that $=T "*$is not a fixed point of T is not true.

Consequently, T has fixed point.
Now we shot that the fixed point is unique.

1 g ¥
m[dﬁ ", TPa)d(T"a, T""a)l}

If possible, let ¢, 3" € X be distinct fixed point of T. Then a($,9") > n (4, %) .
From the inequality 2.2.1, we have
P(d(4,9))= p(d(T4,TH)) < BlpM(I, ) p(M(4,9)) (222)

M (8,9") = max{d (& ¢), d(9,TI), d($, TI), mN(&,T&)d(s',mw],

1

W[d (8 THA(G . T}

= d(4,9).
From(2.2.2) , we have
P(d(39))= p(d(TI9,TH)) < BleM(I,9)) e(M (9, 9)) < p(d(4,9))
Since ¢ is continuous it follows that d (.4, 9") =0, i.e., fixed point is unique.
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