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Abstract—In this paper, we introduce a novel 

approach to automatically detect salient regions in 

an image. Our approach consists of global and 

local features, which complement each other to 

compute a saliency map. The first key idea of our 

work is to create a saliency map of an image by 

using a linear combination of colors in a high-

dimensional color space. This is based on an 

observation that salient regions often have 

distinctive colors compared with backgrounds in 

human perception, however, human perception is 

complicated and highly nonlinear. By mapping the 

low-dimensional red, green, and blue color to a 

feature vector in a high-dimensional color space, 

we show that we can composite an accurate 

saliency map by finding the optimal linear 

combination of color coefficients in the high-

dimensional color space. To further improve the 

performance of our saliency estimation, our second 

key idea is to utilize relative location and color 

contrast between superpixels as features and to 

resolve the saliency estimation from a trimap via a 

learning-based algorithm. The additional local 

features and learning-based algorithm 

complement the global estimation from the high-

dimensional color transform-based algorithm. The 

experimental results on three benchmark datasets 

show that our approach is effective in comparison 

with the previous state-of-the-art saliency 

estimation methods.  

Index Terms—Salient region detection, super 

pixel, trimap, random forest, color channels, high-

dimensional color space. 

I. INTRODUCTION 
We, as humans, are experts at quickly and 

accurately identifying the most visually noticeable 

foreground Object in the scene, known as salient 

objects, and adaptively focus our attention on such 

perceived important regions. In contrast, 

computationally identifying such salient object 

regions [2], [3], that match the human annotators 

behavior when they have been asked to pick a 

salient object in an image, is very challenging. 

Being able to automatically, efficiently, and 

accurately estimate salient object regions, however, 

is highly desirable given the immediate ability to 

characterize the spatial support for feature 

extraction, isolate the object from potentially 

confusing background, and preferentially allocate 

finite computational resources for subsequent image 

processing. 
 

While essentially solving a segmentation problem, 

salient object detection approaches segment only 

the salient foreground object from the background, 

rather than partition an image into regions of 

coherent properties as in general segmentation 

algorithms [3]. Salient object detection models also 

differ from eye fixation prediction models that 

predict a few fixation points in an image rather than 

uniformly highlighting the entire salient object 

region [3]. In practice, salient object detection 

methods are commonly used as a first step of many 

graphics/vision applications including object-of 

interest image segmentation [4], object recognition 

[5], adaptive compression of images [6], content-

aware image editing [7], [8], image retrieval [9]–

[11], etc. 
 

We focus on bottom-up data driven salient object 

detection using image contrast (see Fig. 1) under 

the assumption that a salient object exists in an  

image [2]. The proposed method is simple, fast, and 

produces high quality results on benchmark 

datasets. Motivated by the popular belief that 

human cortical 

• A global contrast based method, which separates a 

large-scale object from its surroundings, is desirable 

over local contrast based methods producing high 

saliency values at or near object boundaries. Global 

considerations enable assignment of comparable 

saliency values across similar image regions, and 
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can uniformly highlight entire objects.  

• Saliency of a region mainly depends on its 

contrast with respect to its nearby regions, while 

contrasts to distant regions are less significant (see 

also [15]).  

• In man-made photographs, object is often 

concentrated towards the inner regions of the 

images, away from image boundaries (see [13]). • 

Saliency maps should be fast, accurate, have low 

memory footprints, and easy to generate to allow 

processing of large image collections, and 

facilitate efficient image classification and 

retrieval. 

II. Related Work 
Our work belongs to the active research field of 

visual attention modeling, for which a 

comprehensive discussion is beyond the scope of 

this paper. We refer readers to recent survey 

papers for a detailed discussion of 65 models [12], 

as well as quantitative analysis of different 

methods in the two major research directions: 

fixation prediction [16], [18] and salient object 

detection [3]. We focus on relevant literature 

targeting preattentive bottom-up saliency region 

detection, which are biologically motivated, or 

purely computational, or involve both aspects. 

Such methods utilize lowlevel processing to 

determine the contrast of image regions to their 

surroundings, and use feature attributes such as 

intensity, color, and edges [33]. We broadly 

classify the algorithms into local and global 

schemes. Note that the classification is not strict as 

some of the research efforts can be listed under 

both categories. Local contrast based methods 

investigate the rarity of image regions with respect 

to (small) local neighborhoods. Based on the 

highly influential biologically inspired early 

representation model introduced by Koch and 

Ullman [21], Itti et al. [17] define image saliency 

using central-surrounded differences across multi-

scale image features. Ma and Zhang [18] propose 

an alternate local contrast analysis for generating 

saliency maps, which is then extended using a 

fuzzy growth model. Harel et al. [19] propose a 

bottom-up visual saliency model to normalize the 

feature maps of Itti et al. to highlight conspicuous 

parts and permit combination with other 

importance maps. 

III. Proposed Method 

3.1. Initial Saliency Tri-map Generation  

In this section, we describe our method to detect the 
initial location of salient regions in an image. Our 
method is a learning-based method and it processes 
an image in super-pixel level. A. Super pixel 
Saliency Features As demonstrated in recent studies, 
features from super pixels are effective and efficient 
for salient object detection. For an input image I, we 
first perform over-segmentation to form super pixels 

X = { 
ܺ
◌ଵ , … …  

ܺ
◌ே◌}. We use the SLIC super pixel 

because of its low computational cost and high 
performance, and we set the number of super pixels 
to N = 500. To build feature vectors for saliency 
detection, we combine multiple information that are 
commonly used in saliency detection. We first 
concatenate the super pixels’ x- and y-locations into 
our feature vector. The location feature is used 
because humans tend to focus more on objects that 
are located around the center of an image. Then, we 
concatenate the color features, as this is one of the 
most important cues in the human visual system and 
certain colors tend to draw more attention than 
others. We compute the average pixel color and 
represent the color features using different color 
space representations. Next, we concatenate 
histogram features as this is one of the most effective 
measurements for the saliency feature, as 
demonstrated in [33].  

The histogram features of the ith super pixel DKi 
is 

measured using the chi-square distance between 
other super pixels’ histograms. It is defined as 

 

Where b is the number of histogram bins. In our 
work, we used eight bins for each histogram. We 
have also used the global contrast and local contrast 
as color features. The global contrast of the ith super 

pixel DGi is given by 

 

Where d(ci, cj )denotes the Euclidean distance 

between the i th and the j th super pixels’ color 

values, ci  and cj , respectively. We use the RGB, CIE 
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Lab, hue, and saturation of eight color channels to 

calculate the color contrast feature so that it has 

eight dimensions.  The  local  contrast  of  the  color 

features DLi 
is defined as 

 

Where Pi ∋[0, 1] × [0, 1] denotes the normalized 

position of the ith super pixel and Zi is the 

normalization term. The weight function in Eq. (4) 

is widely used in many applications including 

spectral clustering [13]. We adopt this function to 

give more weight to neighboring super pixels. In 

our experiments, we set ro square p = 0.25. In 

addition to the global and local contrast, we further 

evaluate the element distribution by measuring the 

compactness of colors in terms of their spatial color 

variance. 

The aforementioned features are concatenated and 

are used to generate our initial saliency tri-map. 

Table I summarizes the features that we have used. 

In short, our super pixel feature vectors consist of 

71. dimensions that combine multiple evaluation 

metrics for saliency detection. 

B. Initial Saliency Tri-map via Random Forest 

Classification After we calculate the feature vectors 

for every super pixel, we use a classification 

algorithm to check whether each region is salient. 

In this study, we use the random forest 

classification because of its efficiency on large 

databases and its generalization ability. A random 

forest is an ensemble method that operates by 

constructing multiple decision trees at training time 

and decides the class by examining each tree’s leaf 

response value at test time. This method combines 

the bootstrap aggregating idea and random feature 

selection to minimize the generalization error. To 

train each tree, we sample the data with the 

replacement and train a decision tree with only a 

few features that are randomly selected. Typically, 

a few hundred to several thousand trees are used, as 

increasing the number of trees tends to decrease the 

variance of the model. We used a regression 

method to estimate the saliency degree for each 

super pixel and classified it via adaptive 

thresholding. As our goal is to classify each super 

pixel as foreground and background, we found that 

using a classification method is more suitable than 

the regression for tri-map generation. Table II shows 

a comparison of the tri-map performance, in which 

the Fg. Precision (FP), Bg. Precision (BP), error rate 

(E R) are defined as below: 

 

in which | · | denotes the number of pixels, FC and BC 

denote the foreground/background candidates, FGT 

and BGT denote the ground-truth annotations’ 

foreground/background, respectively, and I denotes 

the whole image. The error rate (ER) denotes the 

ratio of the area of misclassified regions to the image 

size, and the unknown rate is the ratio of the area of 

the regions classified as unknown to the image size. 

We used 2,500 images from the MSRA-B dataset 

[49], which are selected as a training set from Jiang 

et al. for training data, and we used the annotated 

ground truth images for labels. We generated N 

feature vectors for each image. In total, we have 

approximately one million vectors for the training 

data We used the code provided by Becker et al. for 

random forest classification. In our implementation, 

we use 200 trees and we set the maximum tree depth 

to 10.  

3.2 Saliency Estimation from Tri-map  

In this section, we present our global salient region 

detection via HDCT and learning-based local salient 

region detection, and we describe a step-by-step 

process to obtain our final saliency map starting with 

the initial saliency map. In section IV-A, we propose 

a global saliency estimation method via HDCT [2]. 

The idea of global saliency estimation implicitly 

assumes that pixels in the salient region have 

independent and identical color distribution. With 

this assumption, we depict the saliency map of a test 
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image as a linear combination of high-dimensional 

color channels that distinctively separate salient 

regions and backgrounds. In section IV-B, we 

propose local saliency estimation via learning-based 

regression. Local features such as color contrast can 

reduce the gap between an independent and 

identical color distribution model implied by HDCT 

and true distributions of realistic images. In section 

IV-C, we analyze how to combine these two maps 

to obtain the best result. 

 A. Global Saliency Estimation via HDCT 

 Colors are important cues in the human visual 

system. Many previous studies have noted that the 

RGB color space does not fully correspond to the 

space in which the human brain processes colors. It 

is also inconvenient to process colors in the RGB 

space as illumination and colors are nested here. 

Therefore, many different color spaces have been 

introduced, including YUV, YIQ, CIE Lab, and 

HSV. Nevertheless, which color space is the best 

for processing images remains unknown, especially 

for applications such as saliency detection, which 

are strongly correlated to human perception. Instead 

of picking a particular color space for processing, 

we introduce a HDCT that unifies the strength of 

many different color representations. Our goal is to 

find a linear combination of color coefficients in the 

HDCT space such that the colors of salient regions 

and those of backgrounds can be distinctively 

separated. Fig. 4 illustrates the idea of using the 

linear combination of color coefficients for saliency 

detection. The different magnitudes in the color 

gradients can also be used to handle cases in which 

salient regions and backgrounds have different 

amounts of defocus and different color contrasts. In 

summary, 11 different color channel representations 

are used in our HDCT space. To further enrich the 

representative power of our HDCT space, we apply 

power-law transformations to each color coefficient 

after normalizing the coefficient between [0, 1]. We 

used three gamma values: {0.5, 1.0, and 2.0}.1 this 

resulted in a high dimensional matrix to represent 

the colors of an image: 

 

In which Ri and Gi denote the test image’s i th 

superpixel’s mean pixel value of the R color channel 

and G color channel, respectively. By using 11 color 

channels such as RGB, CIELab, hue, and saturation, 

we can obtain an HDCT matrix K with l = 11 × 3 = 

33. 

 

The nonlinear power-law transformation takes into 

account the fact that our human perception responds 

nonlinearly to incoming illumination. It also 

stretches/compresses the intensity contrast within 

different ranges of color coefficients. Table III 

summarizes the color coefficients concatenated in 

our HDCT space. This process is applied to each 

super pixel in an input image individually. To obtain 

our saliency map, we utilize the foreground 

candidate and background candidate color samples in 

our tri-map to estimate an optimal linear 

combination of color coefficients to separate the 

salient region color and background color. We 

formulate this problem as an l2 regularized least 

squares problem that minimizes  
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where α ∈ R
i 
is the coefficient vector that we want 

to estimate, λ is a weighting parameter to control 

the magnitude of α, and !k is a M×l matrix with 

each row of K corresponding to color samples in 

the foreground/background candidate regions: 

 

 

Where Fsi and Bsj denote the i th foreground 

candidate super pixel among entire super pixels and 

the j th background super pixel among entire super 

pixels that are classified at the tri-map generation 

step, respectively. M is the number of color samples 

in the foreground/background candidate regions (M 

N), and f and b denote the number of foreground 

and background regions, respectively, such that M 

= f + b. U is an M dimensional vector with value 

equal to 1 and 0 if a color sample belongs to the 

foreground and background candidate respectively. 

 

Since we have a greater number of color samples 

than the dimensions of the coefficient vector, the l2 

regularized least squares problem is a 

wellconditioned problem that can be readily 

minimized with respect to α as  ߙ (λI෩ + ܭ◌෩்ܭ) 

= ∗ ିଵܭ◌෩்U. In all experiments, we use λ = 0.05 

to produce the best results. After we obtain α∗, the 

saliency map can be constructed as S�)X୧ � 
ܽ
◌���� 

= ( ∗ ,  
݅
◌ = 1,2, ……,  

ܰ
◌, (12) � �ୀଵ Which denotes 

the linear combination of the color coefficient of 

our HDCT space? The l2 regularize in the least 

square formulation in Eq. (9) restricts the 

magnitude of the coefficient vector to avoid over-

fitting to U. With this l2 regularizer, the constructed 

saliency map is more reliable for the both 

foreground and background super pixels that are 

initially classified in the tri-map. We tested several 

values of λ, and the regularized l2 least square with 

nonzero λ produces better saliency maps than the 

least square method without regularizer (λ = 0). Note 

that the popular l1 regularizer for sparse solution 

could also be considered, but the l1 regularizer is not 

essential in our work, since more accurate 

representation of both foreground and background 

super pixels in HDCT space are  

 

important. Also, it is not necessary for the coefficient 

vector to be sparse. The overall process of the 

HDCT-based saliency detection is described in 

algorithm 1. 

 

Fig.1. an illustration of local saliency features. 

Black, white, and gray regions denote background 

super pixels, foreground super pixels, and 

unknown super pixels, respectively. We use K -

nearest foreground 

super pixels and K -nearest background super pixels to 

calculate a feature vector.  

B. Local Saliency Estimation via Regression 

 Although the HDCT-based salient region detection 

provides a competitive result with a low false positive 

rate, this method has a limitation in that it is easily 

affected by the texture of the salient region, and 

therefore, it has a relatively high false negative rate. 

To overcome this limitation, we present a learning-

based local salient region detection that is based on the 

spatial and color distance from neighboring super 

pixels. Table IV summarizes the features used in this 

section. First, for each super pixel, we find the K -

nearest foreground super pixels and K -nearest 

background super pixels as described in Fig.1. For 

each super pixel Xi, we find the K - nearest foreground 
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super pixels and we use the Euclidean distance 

between a super pixel Xi and super pixels XF S or 

XBS as features. The Euclidean distance to the K-

nearest foreground (∈ RK×1) and background (dBSi 

∈ RK×1) features of the i th super pixel is defined as 

follows: 

 
in which FSij denotes the j th nearest foreground  

super pixel and BSij 
denotes the j th nearest 

background super pixel from the i th super pixel. As 

objects tend to be located in a compact region in an 

image, the spatial distances between a candidate 

super pixel and the nearby foreground/background 

super pixels can be a very useful feature for 

estimating the saliency degree. We also use the 

color distance features between super pixels. The 

feature vector of color distances from the i th super 

pixel to the K-nearest foreground (dCF ∈ R8k×1) and 

background (dBS ∈R8k×1) super pixels is defined as 

follows: 

(dCBi 
∈ R8K×1) super pixels is defined as follows: 

 
 Although a super pixel located near the foreground 

super pixels tends to be a foreground, if the color is 

different, there is a high possibility that it is a 

background super pixel located near the boundary 

of an object. We use eight color channels—RGB, 

CIE Lab, hue, and saturation—to measure the 

color distance, where ci,cFSij, and cBSijare eight- 

dimensional  color   vectors.  The  distance  vector   

d ( ci,cFSij) is also an eight-dimensional vector, 

where each element of d ( ci,cFSij) is the distance in 

a single color channel. To decide the optimal 

number of nearest super pixels K, we calculate the 

F-measure rate for each parameter. Fig. 8 shows 

the result, and we set K = 25, which shows the best 

result.2 

For saliency estimation, we used the super pixel-wise 

random forest regression algorithm, which is effective 

for large high-dimensional data. We extracted feature 

vectors using the initial tri-map, and then, we 

estimated the saliency degree for all super pixels. For 

this local saliency map, even those classified as 

foreground/background candidate super pixels in the 

initial tri-map are reevaluated because they could still 

be misclassified. It should be noted that the initial tri-

map is generated by a random forest classifier and that 

the next random forest regressor generates a local 

saliency map. Considering that we have two stages of 

cascaded random forests, we divided the training data 

set into two disjoint sets so that the second random 

forest is trained with more realistic inputs. Toward this 

end, we trained the first random forest with one data 

set, and we obtained the training data set for the 

second random forest from the tri-maps generated for 

the other data set, which is not used for training the 

first random forest. This process is repeated in a 

manner similar to five-fold cross-validation. We used 

the code provided by Becker et al. [51] for random 

forest regression using 200 trees and setting the 

maximum tree depth to 10. 

C. Final Saliency Map Generation 

    After we generated the global and the local saliency 

maps, we combined them to generate our final saliency 

map. The examples show that the HDCTbased 

saliency map tends to catch the object precisely; 

however, the false negative rate is relatively high 

owing to textures or noise. In contrast, the learning-

based saliency map is less affected by noise, and 

therefore, it has a low false negative rate but a high 

false positive rate. Therefore, combining the two maps 

is a significant step in our algorithm. Borji et al. [38] 

proposed two approaches to combine the two saliency 

maps. The first approach is to perform the pixel wise 

multiplication of the two maps, as shown below: 

 

in which Z is a normalization factor, p(.) is a pixelwise 

combination function, SG is the global saliency result 

(Section IV-A), and SL is the local saliency result 

(Section IV-B). However, this combination tends to 

show darker pixels and suppresses bright pixels, and 
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therefore, some false negative pixels from a global 

saliency map will suppress the local saliency map, 

and the merit of the local saliency map will decrease. 

The second approach is to combine the two maps 

using a summation: 

 

In our study, we combine the two maps more 

adaptively to maximize our performance. Based on 

Eq. (16), we adopt p(x) = exp(x) as a combination 

function to give greater weight age to the highly 

salient regions. The weight values are determined by 

comparing the saliency map with the ground truth. 

We calculate the optimal weight values for the linear 

summation by solving the nonlinear least-squares 

problem, as shown below: 

 

in which GT is the ground truth of an image in the 

training data. To find the most effective weights, 

we iteratively optimize the nonnegative least-

squares objective function in Eq. (17) with respect 

to each variable. As the objective function in Eq. 

(17) is bi- convex, it must converge after a few 

optimization steps; however, different local 

solutions are obtained by the different 

initializations. To obtain the best solution (i.e., the 

solution that yields the smallest value of the 

objective function in Eq. (17) among several local 

solutions), we repeat the optimization process with 

randomly initialized variables several times, and 

the final solution for the objective function in Eq. 

(17) is obtained as m1   = 1.15, m2   = 0.74, ω3 = 

1.57, and m4  = 0.89. We found that our 
performance 
further improves with the values of the solution. 

Finally, we defined the equation of the final 

saliency map combination as 

 

We observe that the performance greatly improves 

after combining the two maps: highly salient regions 

that have been caught by the local saliency map are 

preserved, and the false negative region that is 

vaguely salient is discarded.  

To evaluate the effectiveness of our local saliency 

estimation, we compare the precision-recall curve with 

that of the spectral matting algorithm that extracts 

foregrounds from the user input. We use the tri-map 

result instead of the user input for automatic matting.. 

Although the matting algorithm can provide a 

reasonable result without being influenced by textures, 

we found that the matting method heavily relies on the 

input tri-map and is therefore easily affected by 

misclassified super pixels. On the other hand, the 

learning-based method can determine the saliency 

degree by observing the spatial distribution of the 

nearest foreground and background super pixels, and 

therefore, our method is more robust to misclassified 

errors. 

 

IV. RESULTS 

 

Fig 2.Original image 

 

Fig 3.color transformed image 
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Fig 4.final segmented image 

 

Fig 5. Final extracted image 

Extension results: 

 

Fig 6.original image 

 

Fig 7.colo 

r transformed image 

 

Fig 8. Final segmented image 

 

Fig 9. Final extracted image 
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V.CONCLUSION 

We have provided a unique robust salient region 

detection technique that estimates the foreground 

regions from a tri-map using different methods: 

global saliency estimation through HDCT and 

neighborhood saliency estimation through 

regression. The tri-map-primarily based totally 

strong estimation overcomes the constraints of 

inaccurate preliminary saliency kind. As end result, 

our method achieves proper common overall 

performance and is computationally green in 

assessment to the dominion-of-the art work 

techniques we also confirmed that our proposed 

technique can further improve DRFI, which is the 

quality appearing technique for salient location 

detection. In the destiny, we purpose to boom the 

features for the preliminary tri-map to further 

enhance our set of set of rules performance. 
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