
SUPPORTING MULTI DATA STORES APPLICATIONS IN
CLOUD ENVIRONMENTS

KALLAM PRASANNA, T.SWARNALATHA

1M.Tech Student in CSE, NALANDA INSTITUTE OF ENGINEERING TECHNOLOGY, AP
2Associate Professor, Dept of CSE, NALANDA INSTITUTE OF ENGINEERING TECHNOLOGY, AP

ABSTRACT: The production of huge amount of
data and the emergence of cloud computing have
introduced new requirements for data management.
Many applications need to interact with several
heterogeneous data stores depending on the type of
data they have to manage: traditional data types,
documents, graph data from social networks,
simple key-value data, etc. Interacting with
heterogeneous data models via different APIs, and
multiple data store applications imposes
challenging tasks to their developers. Indeed,
programmers have to be familiar with different
APIs. In addition, the execution of complex queries
over heterogeneous data models cannot, currently,
be achieved in a declarative way as it is used to be
with mono-data store application, and therefore
requires extra implementation efforts. Moreover,
developers need to master and deal with the
complex processes of cloud discovery, and
application deployment and execution. In this paper
we propose an integrated set of models, algorithms
and tools aiming at alleviating
developers task for developing, deploying and
migrating multiple data stores applications in cloud
environments. Our approach focuses mainly on
three points. First, we provide a unifying data
model used by applications developers to interact
with heterogeneous relational and NoSQL data
stores. Based on that, they express queries using
OPEN-PaaS-Data Base API (ODBAPI), a unique
REST API allowing programmer to write their
applications code independently of the target data
stores. Second, we propose virtual data stores,
which act as a mediator and interact with integrated
data stores wrapped by ODBAPI. This run-time
component supports the
execution of single and complex queries over
heterogeneous data stores. Finally, we present a
declarative approach that enables to lighten the
burden of the tedious and non-standard tasks of (1)
discovering relevant cloud environment and (2)
deploying applications on them while letting
developers to simply focus on specifying their
storage and computing requirements. A prototype
of the proposed solution has been developed and is
currently used to implement use cases from the
OpenPaaS project.

Index Terms— REST-based API, NoSQL data
stores, relational data stores, join queries, polyglot
persistence, manifest based matching.

I. INTRODUCTION

Cloud computing has recently emerged as a
new computing paradigm enabling on-demand and
scalable provision of resources, platforms and
software as services. Cloud computing is often
presented at three levels : the Infrastructure as a
Service (IaaS) giving access to abstracted view on
the hardware, the Platform-as-a-Service (PaaS)
providing programming and execution
environments to the developers, and the Sofwtare
as a Service (SaaS) enabling software applications
to be used by cloud’s end users.
Due to its elasticity property, cloud computing
provides interesting execution environments for
several emerging applications such as big data
management. According to the National Institute of
Standards and Technology1 (NIST), big data is
data which exceed the capacity or capability of
current or conventional methods and systems. It is
mainly based on the 3-Vs model where the three Vs
refer to volume, velocity
and variety properties [2]. Volume means the
processing of large amounts of information.
Velocity signifies the increasing rate at which data
flows. Finally, variety refers to the diversity of data
sources. Several people have also proposed to add
more V to this definition. Veracity is widely
proposed and represents the quality of data
(accuracy, freshness, consistency etc.). Against
this background, the challenges of big data
management result from the expansion of the 3Vs
properties. In our work, we focus mainly on the
variety property and more precisely on multiple
data store based
applications in the cloud. In order to satisfy
different storage requirements, cloud
applications usually need to access and interact
with different relational and NoSQL data stores
having heterogeneous APIs. The heterogeneity of
the data stores induces several
problems when developing, deploying and
migrating multiple data store applications. Below,
we list the main four problems which we are
tackling in this paper. Pb1 Heavy workload on the
application developer: Nowadays data stores have
different and heterogeneous APIs. Developers of
multiple data store based applications need to be

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2975

familiar with all these APIs when coding their
applications. Pb2 No declarative way for executing
complex queries ue to the heterogeneity of the data
models, there is currently no declarative way to
define and execute
complex queries over several data stores. This is
mainly due to the absence of a global schema of
heterogeneous data stores. In addition, NoSQL data
stores are schemeless. That means developers have
to cope themselves with the implementation of
such queries. Pb3 Code adaptation: When
migrating applications from one cloud environment
to another, application devel opers have to re-adapt
the application source code in order to interact with
new data stores. Developers have potentially to
learn and master new APIs. Pb4 Tedious and non-
standard processes of discovery and deployment:
Once an application is developed or migrated,
developers have to deploy it into a
cloud provider. Discovering the most suitable cloud
environment providing the required data stores and
deploying the application on it are tedious and
meticulous provider-specific process. Consistency
is also an important issue in multi datastores
applications. In fact, cloud data stores in general
implement different consistency models (strong
consistency model for RDBMS and weak
consistency models for NoSQL
DBMS). This implies that the consistency model at
the application level is not really defined. We do
not address this issue in this paper, focusing only
on querying. The interested reader may read [3]
which proposes a middleware service addressing
the problem of client-centric consistency on top of
eventually consistent distributed data stores
(Amazon S3 for example). In this paper we propose
an integrated set of models,
algorithms and tools aiming at alleviating
developers’ tasks for developing, deploying and
migrating multiple data stores based applications in
cloud environment.

II. EXISISTING SYSTEM

 Cloud computing provides interesting
execution environments for several emerging
applications such as big data management.
According to the National Institute of Standards
and Technology1 (NIST), big data is data which
exceed the capacity or capability of current or
conventional methods and systems. It is mainly
based on the 3-Vs model where the three Vs refer
to volume, velocity and variety properties. Volume
means the processing of large amounts of
information. Velocity signifies the increasing rate
at which data flows. Finally, variety refers to the
diversity of data sources. Several people have also
proposed to add more V to this definition. Veracity
is widely proposed and represents the quality of
data.

Disadvantages:
 We focus mainly on the variety property
and more precisely on multiple data store based
applications in the cloud.
 Cloud applications usually need to access
and interact with different relational and NoSQL
data stores having heterogeneous APIs. The
heterogeneity of the data stores induces several
problems when developing, deploying and
migrating multiple data store applications.
 Heavy workload on the application
developer.
 No declarative way for executing complex
queries.
 Code adaptation: When migrating
applications from one cloud environment to
another, application developers have to re-adapt the
application source code in order to interact with
new data stores.
 Tedious and non-standard processes of
discovery and deployment.

III. PROPOSED SYSTEM

 We propose an integrated set of models,
algorithms and tools aiming at alleviating
developers’ tasks for developing, deploying and
migrating multiple data stores based applications in
cloud environment. First, we define a unifying data
model used by applications developers to interact
with different data stores. This model tackles the
problem of heterogeneity between data models and
the absence of schemes in NoSQL data stores.
Second, we propose virtual data stores (VDS) to
evaluate and optimize the execution of queries -
especially complex ones- over different data stores
(see section 6). In order to support the definition
and the execution of queries over heterogeneous
data models, we use the unifying data model that
we accomplish with correspondence rules. Third,
we present a declarative approach for discovering
appropriate cloud environments and deploying
applications on them while letting developers
simply focus on specifying their storage and
computing requirements.

Advantages:
 Using unifying data model developers
may express and execute any type of queries using
OPEN-PaaS-DataBase API (ODBAPI).
 The highlights of ODBAPI are twofold: (i)
decoupling cloud applications from data stores in
order to facilitate their development and their
migration, and
 (ii) Easing the developer’s task by
lightening the burden of managing different APIs.
 Virtual data stores for complex queries
execution.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2976

 Manifest for data stores discovery and
automatic application deployment.

Architecture:

MODULES:
1. Unifying data model
2. REST API/services
3. Virtual data stores
Modules Description:
Unifying data model:

We define a data model which abstracts
from the underlying (explicit/implicit) integrated
data store models, and provide a common and
unified view so that developers can define their
queries over heterogeneous data stores. During the
development step, the developers dispose of a
global data model expressed according to our
unifying model and which integrates local data
store models. Our unifying data model decouples
query definitions from the data stores specific
languages.
REST API/services:

Based on our unifying data model, we
define a resource model upon which we develop a
REST API, called ODBAPI, enabling to interact
with involved data stores in a unique and uniform
way. Each data store will be then wrapped behind a
REST service implementing ODBAPI. Our API
decouples the interactions with data stores from
their specific drivers. By using our unifying data
model to express the queries and ODBAPI to
interact with the data stores, developers do not have
to deal with various languages and APIs and do not
have to adapt their code.
Virtual data stores:
Wrapper REST services enable executing simple
queries over the involved data stores. However,
they are not meant to execute complex queries
(such as join, union, etc.). In our approach, we
consider virtual data store (VDS for short) a
specific component responsible for executing
queries submitted by a multiple data store
application. A VDS holds the global data model
integrating the different data stores and which is
specified according to our unifying data model and
a set of correspondence rules.

IV. SCREEN SHOTS

Welcome screen:

Click on start rest server:

Rest for chrome:

Posting some data on MY SQL (inserting the
records)
Here we are connecting to MYSQL, db name in
world and table name is city.

After successfully posting the data:

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2977

Check in the database:

Putting some data on mysql (updating):

After successfully putting the data:

Check in database for the updated value:

Get some data from My SQL(retrieving)

Retrived information from the database:

Similarly we can delete the records:

Check in the database after deleting:

Server screen:

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2978

After starting the Mongo db:

Creating a database (name as testing)

Performing post operation:

After successfully posting the data:

Check in the database:

Performing put operation:

Check in the database after updating:

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2979

Searching for a record:

Deleting a record:

Check in the database:

Server screen:

CONCLUSION

 In this paper, we proposed a generic
approach to facilitate the developer task and enable
the development of applications using multiple data
stores while remaining agnostic to
these latter. We introduced three solutions: •
ODBAPI for CRUD operations: We defined a
generic resources model to represent the different
elements of heterogeneous data stores in a Cloud
environment. Based on this, we define a unique
REST API that enables the management of the
described resources in a uniform manner. This API
is called ODBAPI and allows the execution of
CRUD operations on relational and NoSQL data
stores. The highlights of ODBAPI are twofold: (i)
decoupling cloud applications from data stores in
order to facilitate their development and their
migration, and (ii) easing the developer’s task by
lightening the burden of managing different APIs.
It is noteworthy that in the current version of
ODBAPI server, we took into account four data
stores: MySQL, Riak, CouchDB, and MongoDB.
• Virtual data stores for complex queries execution:
We proposed virtual data stores to execute complex
queries (including joins) across NoSQL and
relational data stores. For this purpose, we defined
a unifying data model able to describe the
heterogeneous data models of data stores. It is used
by the user to express
his complex query and by the virtual data store to
process it. Once a virtual data store receives a
complex query, it constructs an optimal query
execution plan, composed by sub-queries at the
level of target data sources, conversion and

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2980

shipping operations and a final query recombining
partial results.
• Manifest for data stores discovery and automatic
application deployment: Once the developer has
completed the development of his application, we
provided him the ossibility to express his
application requirements in terms of data stores in
the abstract application manifest. Then, he sends it
to the matching module that interacts with the
cloud providers discovery module to elect the
appropriate cloud provider to the application
requirements. Indeed, the cloud providers
discovery module discovers the capabilities of data
stores of each cloud provider and returns these
capabilities in the offer manifest. Based on that, the
matching module implements the matching
algorithm in order to elect the adequate cloud
provider to the application requirements and
generates the deployment manifest of the
application. Once it is done, we deploy the
application using the COAPS API that takes as
input the deployment manifest

REFERENCES

[1] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud
Computing - Web- Based Dynamic IT Services.
Springer, 2011.
[2] A. McAfee and E. Brynjolfsson, “Big data: The
management revolution. (cover story).” Harvard
Business Review, vol. 90, no. 10, pp. 60–68, 2012.
[3] T. Kraska, M. Hentschel, G. Alonso, and D.
Kossmann, “Consistency rationing in the cloud:
Pay only when it matters,” PVLDB, vol. 2, no. 1,
pp. 253–264, 2009.
[4] R. Sellami, S. Bhiri, and B. Defude, “ODBAPI:
a unified REST API for relational and NoSQL data
stores,” in The IEEE 3rd International Congress on
Big Data (BigData’14), Anchorage, Alaska, USA,
June 27 - July 2, 2014, 2014.
[5] S. Abiteboul and N. Bidoit, “Non first normal
form relations: An algebra allowing data
restructuring,” J. Comput. Syst. Sci., vol. 33, no. 3,
pp. 361–393, 1986.
[6] D. Kossmann, “The state of the art in
distributed query processing,” ACM Comput.
Surv., vol. 32, no. 4, pp. 422–469, Dec. 2000.
[7] M. Sellami, S. Yangui, M. Mohamed, and S.
Tata, “Paasindependent provisioning and
management of applications in the cloud,” in 2013
IEEE Sixth International Conference on Cloud
Computing, Santa Clara, CA, USA, June 28 - July
3, 2013, 2013, pp. 693–700.
[8] R. Sellami and B. Defude, “Using multiple data
stores in the cloud: Challenges and solutions,” in
Data Management in Cloud, Grid and P2P Systems
- 6th International Conference, Globe 2013,
Prague, Czech Republic, August 28-29, 2013.
Proceedings, 2013, pp. 87–98.

[9] M. Pollack, O. Gierke, T. Risberg, J. Brisbin,
and M. Hunger, Eds., Spring Data. O’Reilly Media,
October 2012.

International Journal of Management, Technology And Engineering

Volume IX, Issue I, JANUARY/2019

ISSN NO : 2249-7455

Page No:2981

