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Abstract-In this paper, we have defined the summability for improper integrals and generalizing results of Ozgen and
Mishra et al, we have established a theorem on indexed absolute Norlund summability factors of improper integral under
sufficient conditions. Some auxiliary results (well-known) have also been deduced from the main result under suitable

conditions. However, we established the main result on |N, p, 5; ,u|k summability.
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1. LITERTURE SURVEY

Considering the(N, pn)and(K,l,a)summability, Parashar [12] obtained the minimum set of conditions for an
infinite series to be (K,l, a)summable. In 1986, Bor [1] found a relationship between two summability techniques

(C,l)k and ‘N, P,

« and in [2], he used the ‘N, P,

« for generalization of a theorem based on minimal set of

sufficient conditions for infinite series. In 2016, Sonker and Munjal [12] determined a theorem on generalized
absolute Cesaro summability with the sufficient conditions for infinite series and in [13] , they used the concept of

triangular matrices for obtaining the minimal set of sufficient conditions of infinite series to be bounded. In 2017,
Sonker and Munjal [13] found the approximation of the function f € Lip(a, p) using infinite matrices of Cesaro

submethod and in [14] ,they obtained boundness conditions of absolute summability factors. In this way by using the

advanced summabuilitymethod,we can improve the quality of the filters. Borwein [3] extened many results on
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ordinary and absolute summability methods of integral.Canak [4] and Totur [15] worked on the concept of Cesaro

summability with a very interesting result for integrals.In the same direction,weextened the results of Mazhar [6]

with the help of some new generalized conditions and absolute Norlund summability |N, P, |, factor for integrals.

!

2. INTRODUCTION

Let Z &, be an infinite series with sequence of partial sums {Sn} - Let
1
o =HZSK : 2.1)

The series Zan is said to be (C,l) summable, if

limo, =s (2.2)

n—oo

where s’ is a finite number. The series Zan is said to be |C’]4k ;K =1, summable, if

i n“*lo, -0, “<oo (2.3)

n=1

X
Let f be a real valued continuous function defined in the interval [O,oo) and S(X) = J. f (t)dt. We define the
0

Cesaro mean of S(X) , denoted by T(X) , as

7(x)=

1 [s(t)at (2.4)
X 0

r(x)==[(x=t)f (t)dt . (25)
0
The integral I f (t)dt is said to be summable|C,l|, if
0

ﬂr’(x)‘dx <o (2.6)

0
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and is said to be summable |C,]4k Jk>1if

k
r’(x)‘ dx < 0. 2.7)

J’Xk—l
0

X
Let p(X)be a real valued continuous function defined in the interval [0,o0)and P(x) = I p(t)dt. we define
0
the Norlund mean or (N ) p) mean of S(X) asa functiont(x)given by

t(x)=ﬁ;fp(t)s(t)dt . 9

The integral J. f (t)dt is said to be summable|N, p| if
0

t'(x)[dx < oo . (2.9)

0
It is said to be summable |N, p|k k=1 if

T(%JM ‘t'(x)‘kdx <oo. (2.10)

0

and is said to be summable |N, p,é‘|k k>1 6>0and ok <1, if

Further, for 1 >1, the integral J f (t)dt is said to be summable |N, p,o; ,u|k if
0

t’(x)\kdx <. (2.12)

Clearly we have
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s(x)—7(x) :ﬁip(t) f(t)dt.

s(x)—z(x)=v(x) (2.13)
3. KNOWN RESULTS
Concerning absolute Cesaro summability |C,ZI.|k factors of integrals, Ozgen [8] obtained the following results :
Theorem -3.1:
Let 7(X) be a positive monotonic non-decreasing function
such that

A(X)7(x)=0(1),asx > 0 (3.1.1)

X
Ju
0

A"(u)y (u)du=0(1), (3.12)

:[v(uu)‘

du=0(y(x)),asx > . (313

Then the integral J- f (t)dt is summable|C,]1k k>1.
0

Recently, Mishra et al [7] extended Theorem-3.1.to |C,1, 5|k ,02>0,0k <1 summability by establishing

the following theorem:

Theorem-3.2.

Let y ( X) be a positive non-decreasing function and there be two functions ﬁ(x) and & ( X) such that

&' (%) < B(x), (3.2.1)

Volume 8, Issue X1, DECEMBER/2018 Page No0:3236



International Journal of Management, Technology And Engineering ISSN NO : 2249-7455

B(X)—>0,asx —> o0 (3.2.2)

0

Ju

0

B'(u)x(u)du <o, (3.23)

(%) x(x)=0(1), (3.2.4)

and

v (u)[ du=0(z(x)),asx - o (3.25)

O ey <

Then the integrals Jg(t) f (t)dt is summable |C,l, 5|k ,for k >1, 5k <1.
0

Very recently dealing with Norlund summability of Improper Integrals, Padhy et al [9]have established following

result.

Theorem-3.3.

Let p(0)>0, p(x)=0 and a non-increasing function.Let y ( X ) be a positive non-decreasing function and
V4

there be two functions /3 ( X) and & ( X) such that

&' (%) < B(x), (33.1)

B(x)—>0,asx >0 (33.2)

le(x)| #(x)=0(1), @333

: IP'(U)‘ﬂ(U)\Z(u)dw 0(1), as x - (33.5)

(p(x)) "5

and
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(OIP'(t

—)‘k‘v(t)‘k dt=0(%(x)), as x —> = .(3.36)

‘P
£F’(t)(IO(t))

Then the integral _[g(t) f (t)dt is summable |N, p|k Jfor k>1.
0

Extending the above result to |N, p,5|k k>1, 6>0and ok <1, summability

Paikray et al [10] have established the following theorem :

Theorem-3.4.

Let p(0)>0, p(x)=0 and a non-increasing function. Further let y ( X ) be a positive non-decreasing function
X

and there be two functions ﬂ(X) and & ( X) such that

l&'(X)| < B(x), B4.1)

,B(X) —0,as X > 0 (3.4.2)

l(x)| 2 (x)=0(1), (3.4.3)

o] e

B'(u)|z(u)du=0O(1), as x — o0 (34.4)

P'(u)[B(u)|x(u)du=0(1), as x - (3.45)

VR
o | O
X [ <
—~
—~

H
~—
~—

=

AN
O ey <

E(Z(t)r—l( :,’(t)Jk V(1) dt=0(x(x)), as x >0 .(3.46)

Then the integral | ¢(t) f (t)dt is summable [N, p,d| ,for k >1and 0 < Sk <1.
k
0
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4. MAIN RESULT

However, we establish the following result on |N, p, o, ,u|k summability. We prove

Theorem -4.1:Let ;((X) be a positive non-decreasing function and there be two functions ,B(X) and S(X) such

that

&' (X)| < B(x), @.1.1) (4.11)
B(X)—>0,asx =00 (4.1.2)

e(x)| 2(x)=0(1), @13

P(u)

B (u)|x (u)du=0(1), as x — oo (4.1.4)

( I; E;(;Jﬂ(émkl)kﬂ W

P(X) ﬂ(émkfl)*kﬂ#x "(u u u)du= as X > oo (4.1
{p(x)J (p(x))k-lip( )|A(u)x(u)du=0(1), @.15)

O ) <

and

Then the integral _[g(t) f (t)dt is summable |N, p,d, ,u|k ,for k >1and 0< Sk <1.
0

Note:

The above theorem can be proved by using the concept of example that jx|[3'(x)|;((x)dx <o
0]

©

is weaker“. x|e" (x)|x (x)dx < »,and hence the introduction of the function{B(x)}is justified.
(0]

Proof: It may be possible to choose the function ﬂ(x) such that
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When &'(X) oscillates, 3 ( X ) may be chosen such that ‘,B(X)‘ <

8”(X)‘. Hence f'(X) <

g”(x)‘ ;50 that

0

[x

0

,B'(X)‘ 2 (X)dx < oois a weaker requirement thatj X‘e‘”(x)‘;((x) dx <oo.
0

5. PROOF OF THE THEOREM

Let T (X) be the (N, pn) mean of the integral Ie(t) f (t)dt .The integral Ie(t) f (t)dt is |N, pn|k
0 0

summable, if

j(zg;}#((sm_” [T'(t)| dt=0(1),asx >0, (5.1)

0

where T (X) is given by

g

On differentiating both sides with respect to X ,we get

"(x)= ! X'x u)e(u)f (u)du
T00= g 1P 0P )
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S u) f(u)du-— P'(x) Xg' u u f (t)dtdu
(P(x))2 !P( ) f(u)d (P(x))2£ ( )!P(t) (t)dt

= P'(X)g(x)v(x)_ P’ X) h u)e'(u 1 5 u

= P(X) (P(x))z'([P( ) ( )(P(u)lp(t)f(t)dtJd

P (x)e(x)v(x)  P'(x) .

TR (et N

=T.(X)+T,(x) (5.3)

Applying Minkowski’s inequality, we have
T =Tl <2 (o +mf)

Further, by Holder’s inequality, we have

‘k
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=O(1)—/3(X)J:;((u)du+Dﬂ'(t)‘(;[;((u)dujdx

SO(l)—ﬁ(x)j;((u)du+Et‘ﬂ’(t)‘z(t)dt

(5.5)
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u(Sk+k—=1)—k+1

1
P(x) (p(x))"

X

P'(u)|A(u) 2 (u)du—[(P(u) B'(u)) 2 (u)du

0

P (|80 x (x)-

O ey <

:O(l), as X —> 00 . (5.6)

On collecting (5.2)-(5.6), we have

M 4(Sk+k-1)
I lt) |T'(t)|k dt=0(1) , aa Xx—>o0.

o\ P(t)

This completes the proof of the theorem.
6. CONCLUSION

The main result of this research article is an attempt to formulate the problem of absolute summability factor of
integrals which make a more modified filter. Through the investigation, we concluded that the improper integral is
absolute Norlund summable under the minimal sufficient conditions. Further, this study has a number of direct
applications in rectification of signals in FIR filter (finite impulse response filter) and IR filter (infinite impulse
response filter). In a nut shell absolute summability method is a motivation for the researchers, interested in studies

of improper integrals.
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