

Study on Software Quality improvement based on Root Cause & Corrective Actions

Abhishek Anurag

Ph.D. Student in Computer Science & Engineering
Amity School of Engineering & Technology

Amity University Mumbai

1. Abstract:

Complexity of software system has grown
exponentially as usage and nature of software
has changed significantly. In such complex and
ever-changing environment, it’s very difficult to
maintain the Quality of the software system.
Designing, developing, maintaining a software
system and ensuring its quality is very costly as
cost is directly associated with efforts & time.

Whenever a software system is used by users
and if quality of the system is poor they will be
encountering issues (delivered defects) which
needs to be fixed. Such issues impacting quality
must always be “Root Caused” to see why they
originated, how they didn’t appear while
designing, developing or testing the system. It’s
very important that issues are caught very early
as late an issue is caught it’s very expensive to fix
that. There might be many reasons of issues to
be missed viz. unit level testing was not done
correctly, code coverage was not proper, test
planning was not good, test execution didn’t
happen, etc. In a very simple terminology it can
be said that “There must always be a test case
which can replicate the issue found in the
system before an end user reports that”. Once
issue is ‘identified and root caused’ then exact
“Corrective Actions” can be taken. It will help
ensure in future for the same or similar systems

having similar design principles are not yielding
similar failures.

2. Keywords:

Defect Detection, Defect Prevention, Root
Cause, Corrective Action, Life Cycle

3. Introduction:

3.1 Overview:

Quality is directly associated with ‘Function
Points’ which was defined in 1979 in ‘Measuring
Application Development Productivity’ by Allan
Albrecht [3] at IBM. Function point is a unit of
measurement to express the amount of
business functionality an information system (as
a product) provides to a user. Function points
measure software size. Software size is directly
associated with complexity and quality.

As per studies on “Software Quality in 2012: A
Survey of the State of the Art” by Capers Jones
[4], Vice President and Chief Technology Officer,
Namcook Analytics LLC, total defects delivered
per function point for best in class, average and
poor-quality software systems are as below:

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/252

It’s very difficult and complex to define quality
of a software system. There are numerous ways
it’s defined and achieved in software systems. A
software system can have different level of
tests. Every test plans will have finite set of test
cases and upon execution will give Q-Score. This
tells overall quality of the system based on
different areas tested depending upon test
plan’s Q-Score. It’s really very complex and
costly to ensure quality of system is not
degrading based on new features
implementation, feature modifications and bug
fixes due to changing requirements and
environments. Such changes must not cause
new bugs or regressions. Any bug in the system
cause the system quality to degrade as end
user’s exquisite experience goes down with
every bug encountered in the system. So, for
engineers involved in development and
validation of software system it’s very critical to
ensure Q-Score is always as desired and
acceptable. Every system can have different
level of Q-Score criteria based on the milestones
of the product viz. Alpha, Beta, RC, PRC, MP,
OTA, etc.

Quality of a software system can typically be
measured as Q-Score. Q-Score or Quality Score
or Pass % can be defined as:
Q-Score == [Total Tests Passed / Total Tests
Executed]. It’s a metric which eventually tells the
health of the software system in its current
state.

Traditionally a Q-Score matrix can be defined as
below:

Above matrix example can be any traditionally
ideal Q-Score metric for Android based
Embedded System Software running on
embedded platforms. NA is “Not Applicable”
test plans for that milestone. Milestones can be
briefly explained as: ‘Alpha’ is first phase of
software development or bring up stage, ‘Beta’
is features complete stage, ‘RC’ is release
candidate for internal beta users, ‘PRC’ is
production release quality which will go to initial
device manufacturing stage, ‘MP’ is mass
production stage which is finally released to
customers, ‘OTA’ is Over the Air releases for
future enhancements or maintenance of
software.

Most important challenge for any software
product is “reduce defects delivered to
customers”. Every release made to customers
have goals: how many more features delivered
with lesser defects from previous release. Evelyn
[15] study focuses on how customer defects can
be analyzed systematically and gathered
information and actions can be incorporated
into testing. Her findings were indicating that

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/253

most of defects were based on how existing or
old features were used in different
environments and configurations whereas most
of testing focus was on new features.

Every software released to customers depend
on increasing demand of new features and
existing defects being fixed. This is being catered
based on software development practices which
focus on faster delivery of new features
incorporated without sacrificing quality. Factors
which are most crucial for software
development process are: interval, quality and
cost; Marek, Dewayne and Dieter [7]. If software
defects are caught later stages of development
or software milestones fixing them becomes
costly affair. So, knowing kind of defects, what
are root cause of defects and taking
countermeasures to detect them early and
repair them is very critical. Software deliverables
high level goals are: shorter interval to deliver
features and fix bugs, higher quality and lesser
or no defects and lowest cost. Defect root
causes analysis is very critical as multiple defects
can be detected due to same root cause and
might be missed while design, implementation
and testing.

Basically, there are two kinds of cause for
defects being introduced: one is technology
related – technical defects and another is
procedure related – procedural or process
related. The defects are caught while doing
‘design & implementation’ review and testing.
Root cause analysis must be done to
understands these aspects and accordingly
corrective actions must be planned.

Number of defects detected is a one of
important ways to measure software quality. It
is one of the metric of software quality. At every
phase of development and testing process how
many defects detected determines software
quality in general. But, that is not unified ways

as every defect might be different priority and
severity based on impact. Defects impact based
on severity and priority defines majorly what is
quality in terms of end user’s perspectives.
Origin of defect or the phase where defect was
introduced is one of another metric to define
software quality. The phase where defects
originates defines its impact.

There are two industry standard schemes: one is
HP scheme and another is Orthogonal Defects
Classification (ODC) Scheme.

The HP Scheme talks about three attributes: A.
Origin – where defect was introduced, B. Type –
describes defect of a particular origin in more
detail and C. Mode – describes why defect was a
defect. Can be represented as:

ODC scheme explains two perspectives of
defects. One is: when a defect is opened, what
are circumstances which leads to defect and
what is impact to the user. Another is: when
defect is fixed what is nature of defect and what
is scope of the fix. In this scheme, mainly three
attributes are collected when defect is opened:
Activity, Trigger and Impact. Also in this scheme
five attributes are collected when defect is
closed: target, Defect Type, Qualifier, Age and
Source.

Overall, it could be said that “Quality is directly
associated to defects and defects leads towards
improving quality eventually and continuously”.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/254

3.2 Scope of Study:

1. To design and implement a model where

“systematic corrective actions” can be
guaranteed to prevent any recurrence of
issues happening in the field which impact
the quality. This systematic corrective action
model will be implemented at all stages of
SW flow viz. Requirements, Design,
Implementations, Verification and
Maintenance.

2. In current SW system environments, there
are no specialized process or practices which
can associate how quality is directly
associated to “Root cause and Corrective
Actions” of a defect, it’s type, priority and
severity. Fewer the issues reported by end
users better is the quality of SW systems.

3.3 Objectives of this Study:

1. Create a Model based on Root Cause &
Corrective Actions to help improve Quality of
a Software System:

A. Classifying each software systems
into different major categories

B. Quantifying the Q-Score of each
system

C. Defining major categories of root
causes based on root cause analysis
(RCA) of issues

D. Defining Q-Score weightage
associated with each categories of
root causes

E. Defining systematic preventive and
corrective actions associated at
every stage of SW flow

2. Based on this process model at each stage of
SW system test plans can be defined
ensuring issues or recurrence of issues are
not happening, helping more tests to be
passed to help improve Q-Score or pass % of

the system. Eventually ensuring lesser
defects delivered to customers.

3. Generalize a model where Quality is not
measured only based on Pass% or how many
tests executed and how many passed.
Rather take SW phase, defects origin, it’s
type, priority, severity and test types also in
create pass% weightage.

3.4 Related Work:

Marek, Dewayne and Dieter [7] did a case study
in Root cause defect analysis study (RCA) of a
project having goals as:

 Analyze sample defect modification
requests (MRs) and find systematic root
cause of defects

 Analyze major customer reported
modification requests during
maintenance release (called post-GA
MRs, GA = general availability of the
product)

 Proposed improvement actions as input
for current development project to
reduce number of critical defects and
reduce defect fix effort.

Here study was made based on modification
requests data taken from MR database and have
MR classification scheme. In this study Marek,
Dewayne and Dieter [7] explain MR classification
schemes as: process phase where defect is
found, classes of defects, defects types, defect
nature, defects severity, defect location, defect
triggers (root cause). Four root cause
dimensions discussed are: phase triggers,
human triggers, project triggers and review
triggers. In this approach, rather than only one-
dimensional root cause classification (single
unique root cause) it was suggested to use four-
dimensional root cause space. Basically, here
strategy was to define countermeasures based
on root causes and implement improvement
actions effectively.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/255

Evelyn [15] stresses that numerous study was
made on how to catch defects early based
improvements made in areas of requirements,
design, code review, implementations, etc. At
same time, there must also be efforts and
continuous improvements in area of “testing
techniques” based on defects which were
detected in the field. She explains that just
adding a test case to catch customer defect is
not effective solution. Chances of same test case
failing again based on same sequence of events
are very low. Her analysis is mostly based on
Orthogonal Defect Classification (ODC) [19] to
use triggers – environment or conditions in
which defect is exposed. The key difference in
her study from ODC is termed as: “Minimum
Conditions”. Minimum conditions depict the
essential minimum perquisites for the defect to
occur. Minimal conditions help test engineers to
create an environment or testing techniques to
help repro problems efficiently. Her study
suggests that most important reasons for
defects are: due to change in environment or
configuration causing existing features to break
and change in code due to defects being fixed.
This study tells that based on minimum
conditions – test environments can be set, test
cases chosen, exploratory testing and
automated testing defined.

Naomi and Shigeru [12] talks about to improve
software quality it needs to understand root
causes of the defects. If root cause is understood
by using technique “why-why analysis” fixing
that will help close all defects with same root
cause. They describe “defect root cause analysis
and 1+n procedure” on how to improve
software quality. This study is basically based on
root cause analysis techniques, mainly: 1. Why
analysis – five times why – also termed as “Why-
Why Analysis” 2. FTA – fault tree analysis and 3.
FMEA – Failure Mode Effect Analysis. FTA &
FMEA are basically techniques designed to

analyze causes of a predicted software failure
mode.

Why-why analysis basically suggests adding
tests into coverage based on root cause to
improve quality. These additional tests are
called “lateral search of defects. For any defect,
there might be multiple root causes called
‘Specific Root Cause’ or ‘Common Root Cause’.
Specific root cause is direct root cause of the
defect and common root cause is indirect cause
of the defect. Once specific root cause is fixed
defect will not occur again but if only common
root cause is fixed there is still probability that
defect might occur. Defect trend assessment,
defect root cause analysis and 1+n procedure
and defect convergence determination are
important steps in this study. In this study three
kinds of root causes are focused: cause of defect
introduction in design, cause of defect
overlooked in design review and cause of defect
overlooked in testing. In this study, the
development process model is taken in V model.
So, basically this study, “defect root cause
analysis” analyzes these three types of specific
root causes and “1+n procedure” detects
defects of same kind. 1 represents original
defect analyzed and n represents total number
of same kind defects detected.
This study also points out that since “why-why
analysis” is based on ‘specific root cause’ and
‘common root cause’ analysis it’s inefficient to
catch same kind of defects. This study solves this
problem and effectively can detect defects of
same kind by narrowing down only on “specific
root cause”.

Bernd, Christian & Markus [16] present an
approach they developed to define, introduce,
and validate a customized defect classification
scheme. They discussed how quality
management is associated with defect
classification schemes. They find that Hewlett-
Packard (HP) Scheme and IBM’s the Orthogonal

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/256

Defect Classification (ODC) schemes are too
generalized to be incorporated for every
companies. They discuss the need of customized
defect classification schemes. The most
fundamental approach is to combine “software
engineering know-how of measurement
experts” e.g. principles of defect classification
schemes (successful elements of existing
schemes) and “the domain know-how of
developers” (knowing essentials of defects and
special context of the project working on). In
their study development process was
customized as: Requirements, Concept
Development, Concept Discussion, Function
Specification, Function Review, Code
Implementation, Code Review, Functional Test,
Integration, Integration Test and Calibration.
Quality assurance process is followed
throughout development process in this model.
Here quality measurement is based on
techniques of finding which defects are
introduced in which development activity and
with which quality assurance techniques they
are detected and fixed. In this study, the
proposed process is based on interviews
prepared by measurement experts and in which
knowledge and experience is captured of
domain experts. Whole process in a tabular
form can be understood as below:

3.5 Limitation to Other Works:

Marek, Dewayne and Dieter [7] basically did
study based on defects limited to product under
study, defined four-dimensional root cause

space and proposed countermeasures and
improvement actions. Here it’s not discussed
basically what is current state of quality, how it’s
measured and based on countermeasures and
improvement actions what is improvement in
quality of software system. There are limitations
in terms of how this process can be generalized
and used for different products and
organizations to help improve software quality.

Evelyn [15] mostly discussed about: process
improvements based on minimum conditions,
testing strategy improvements, exploratory
testing, regression testing, system testing and
more automated testing based on defects found
by customers. It majorly focuses on testing
existing features based on changed
environments or configurations. Quality
improvements depicts mainly how next release
customer found defects (CFDs) are reduced.

Naomi and Shigeru [12] discussed “why-why
analysis” focuses on both ‘Specific root cause’
and ‘common root cause’. Their techniques
“root cause analysis & 1+n procedure” only
focuses on specific root cause of the defects.
Why-why analysis is extensively applicable while
1+n procedure is extremely objective-oriented.
It is based on only V software development
model. It is only suitable to point specific root
cause of a problem and fix that so it’s not
suitable for wide range of problems. Since it
takes lots of time to root cause of a problem, this
technique limits to very important problem.
Another limitation here in this study is that the
person who generated and introduced the
defects is only responsible for root cause
analysis. “1+n procedure” needs to keep
repeating till all defects of same kind are not
detected. In this technique quality is measured
against prior and after the process how many
defects of same kind is getting detected and %
defects are still getting delivered.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/257

Bernd, Christian & Markus [16] mostly have
specialized classification scheme based on
automotive embedded systems. They mainly
depend on defect types defined by HP Scheme
& ODC scheme. Their major focus is mostly to
define defect types and determine which quality
assurance technique can address which types of
defect. In this study the dependency is mainly on
structured interviews conducted with
developers and their knowledge.

4. Methodologies:

It will be combination of:
A. Causal research (Experiment) – here Quality

Score (Q-Score) is dependent variable. The
possible independent variables will be based
on: Phase of Development Cycles, Defect
Types, Root Cause of defects and Test types

B. Descriptive research (Survey) – will have key
aspects as below:

i. Questionnaire based on problem &
variables under study

ii. Purposive Sampling – Pick N large scale
software based companies mainly
located in Pune. Each company’s
“Quality Head” who owns the quality of
software deliverables in these software
organizations will be asked for feedback

5. Conclusion:

This paper studies aspects of software quality,
defects, root cause and corrective actions of
defects. In this study current software quality
model and various related work is analyzed.
Current software quality model is mainly based
on how many tests are executed and how many
tests passed and failed. There are many other
aspects of quality approach is discussed based
on Root Cause Analysis (RCA). In this study
relevant RCA methods are analyzed how they
help improve quality of a software system.

This paper study focuses on feasibility analysis of
creating a generalized quality model. This
quality model will be based on mainly defects,
root cause of defects, corrective actions of
defects and other major practices and aspects of
software development and testing techniques.

6. Limitations and future work:

1. Whole study will be based on defects
study of Android based embedded
system software product. Defects
under analysis are from May 2013 to
April 2017.

2. Study is based on major embedded
software companies located only in
Pune, India.

3. Root cause and corrective actions
action are completely manual
process in this study. Later part of
study can be focused on how defects
are analyzed automatically, co-relate
them to the changes made in design,
implementation, testing and bug
fixes generating the defect.
Automatically modelling of what are
changes based tests coverage
needed, automatically list down test
coverage and trigger the tests to
avoid regressions and defects. These
automatic actions can be taken
based on machine learning and
artificial intelligence techniques.

7. Acknowledgement
A sincere thanks to Prof. (Dr.) R. Kamatchi,
Professor, Head, CSE, Amity School of
Engineering and Technology, Mumbai; being
mentor and guide and for continuous help
and support to come up this review paper.

8. References:

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/258

“Principles and rules are intended to provide a thinking
man with a frame of reference.”

1. Roger Pressman; Software Engineering – A Practitioner’s
Approach; Tata McGraw Hill, Sixth Edition, 2010

2. Pankaj Jalote’s Software Engineering – A Precise Approach,
Wiley Precise, First Edition, 2010

3. ‘Measuring Application Development Productivity’ by Allan
Albrecht at IBM, 1979
http://www.bfpug.com.br/Artigos/Albrecht/MeasuringAppli
cationDevelopmentProductivity.pdf

4. “Software Quality in 2012: A Survey of the State of the Art”
by Capers Jones, Vice President and Chief Technology Officer,
Namcook Analytics LLC, May 1, 2012, www.Namcook.com
http://sqgne.org/presentations/2012-13/Jones-Sep-
2012.pdf

5. Jones, Capers & Bonsignour, Olivier; The Economics of
Software Quality;
Addison Wesley, 2011
http://ptgmedia.pearsoncmg.com/images/9780132582209/
samplepages/0132582201.pdf

6. Kan, Steve; Metrics and Models in Software Quality
Engineering, Addison Wesley, 2003
http://hornad.fei.tuke.sk/kpi/person/samuelis/metrics/Metr
ics%20and%20Models%20in%20Software%20Quality%20En
gineering,%202ed%20%5BAddison%20Wesley'2002%5D.pdf

7. Marek Leszak; Lucent Technologies, Optical Networking
Group, Thurn-und-Taxis-Str. 10, 90411 Nuernberg, Germany.
Dewayne E. Perry; Electrical and Computer Engineering, The
University of Texas at Austin, Austin, TX. Dieter Stoll; Lucent
Technologies, Optical Networking Group, Thurn-und-Taxis-
Str. 10, 90411 Nuernberg, Germany: A case study in root
cause defect analysis
Proceeding. ICSE '00 Proceedings of the 22nd international
conference on Software engineering Pages 428-437 ACM
New York, NY, USA ©2000 table of contents ISBN:1-58113-
206-9 doi>10.1145/337180.337232

8. Mikko Nieminen; Digital Syst. & Services, VTT Tech. Res.
Centre of Finland, Oulu, Finland. Tomi Räty; Digital Syst. &
Services, VTT Tech. Res. Centre of Finland, Oulu, Finland:
Adaptable Design for Root Cause Analysis of a Model-Based
Software Testing Process. Information Technology - New
Generations (ITNG), 2015 12th International Conference on.
978-1-4799-8828-0/15 $31.00 © 2015 IEEE DOI
10.1109/ITNG.2015.67

9. Timo O. A. Lehtinen; Sch. of Sci., Dept. of Comput. Sci. & Eng.,
Aalto Univ., Espoo, Finland. Mika V. Mantyla; Sch. of Sci.,
Dept. of Comput. Sci. & Eng., Aalto Univ., Espoo, Finland.
What Are Problem Causes of Software Projects? Data of Root
Cause Analysis at Four Software Companies. 2011
International Symposium on Empirical Software Engineering
and Measurement. 978-0-7695-4604-9/11 $26.00 © 2011
IEEE DOI 10.1109/ESEM.2011.55

10. Ferdian Thung; David Lo; Lingxiao Jiang; Sch. of Inf. Syst.,
Singapore Manage. Univ., Singapore, Singapore. Automatic
recovery of root causes from bug-fixing changes. 2013 20th

Working Conference on Reverse Engineering (WCRE). 978-1-
4799-2931-3/13/$31.00 c 2013 IEEE

11. Li Meng ; Xiaoyuan He; Neusoft Group Ltd, China.
Ashok Sontakke; Nihilent Technologies Pvt. Ltd., Pune,
411001, India. Defect Prevention: A General Framework and
Its Application. 2006 Sixth International Conference on
Quality Software (QSIC'06) 0-7695-2718-3/06 $20.00 © 2006,
IEEE.

12. Naomi Honda; IT Software Operations Unit, NEC Corporation,
1-10, Nisshin-cho, Fuchu, Tokyo 183-8501, Japan e-mail: n-
honda@ay.jp.nec.com.
Shigeru Yamada. Department of Social Management
Engineering, Graduate School of Engineering, Tottori
University, Tottori-shi 680-8552, Japan e-mail:
yamada@sse.tottori-u.ac.jp. - ‘‘Defect Root-Cause Analysis
and 1+n Procedure’’ technique to improve software quality.
Received: 3 April 2012 / Revised: 20 June 2012 / Published
online: 25 July 2012 The Society for Reliability Engineering,
Quality and Operations Management (SREQOM), India and
The Division of Operation and Maintenance, Lulea University
of Technology, Sweden 2012. Springer.

13. Cagla Atagoren; Information Technology and System
Management, Bas¸kent University, 06810, Ankara, Turkey e-
mail: caglaatagoren@gmail.com. Oumout Chouseinoglou;
Statistics and Computer Science Department, Bas¸kent
University, 06810, Ankara, Turkey e-mail:
umuth@baskent.edu.tr. A Case Study in Defect
Measurement and Root Cause Analysis in a Turkish Software
Organization. R. Lee (Ed.): SERA, SCI 496, pp. 55–72. DOI:
10.1007/978-3-319-00948-3_4 c Springer International
Publishing Switzerland 2014

14. Fuping ZENG, Aizhen CHEN, Xin TAO; Department of System
Engineering Beihang University Beijing, 100191, China. Study
on Software Reliability Design Criteria Based on Defect
Patterns. 978-1-4244-4905-7/09/$25.00©2009 IEEE

15. Evelyn Moritz; AVAYA emoritz@avaya.com. Case Study: How
Analysis of Customer Found Defects Can Be Used by System
Test to Improve Quality. Software Engineering - Companion
Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3494-7/09/$25.00 © 2009 IEEE

16. Bernd Freimut; Fraunhofer IESE; Sauerwiesen 6; 67661
Kaiserslautern, Germany; freimut@iese.fhg.de. Christian
Denge; Fraunhofer IESE; Sauerwiesen 6; 67661
Kaiserslautern, Germany; denger@iese.fhg.de. Markus
Ketterer; Bosch GS-EC/ESP; P.O. Box 30 02 40; 70442
Stuttgart, Germany; Markus.Ketterer@de.bosch.com. An
Industrial Case Study of Implementing and Validating Defect
Classification for Process Improvement and Quality
Management. 11th IEEE International Software Metrics
Symposium (METRICS'05).

17. Marcos Kalinowski, Guilherme H. Travassos, and David N.
Card; COPPE – Federal University of Rio de Janeiro – Brazil, 2
Bennett – Methodist University of Rio de Janeiro – Brazil, 3
Det Norske Veritas - USA [mkali, ght]@cos.ufrj.br ,
card@computer.org. Towards a Defect Prevention Based
Process Improvement Approach. 2008 34th Euromicro
Conference Software Engineering and Advanced

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/259

Applications. 978-0-7695-3276-9/08 $25.00 © 2008 IEEE DOI
10.1109/SEAA.2008.47.

18. J.H. van Moll; Philips Semiconductors ReUse Technology
Group Prof. Holstlaan 4 5656 AA Eindhoven The Netherlands
jan.van.moll@philips.com. J. C. Jacobs; Philips
Semiconductors ReUse Technology Group Prof. Holstlaan 4
5656 AA Eindhoven The Netherlands jef.jacobs@philips.com.
B. Freimut Fraunhofer; IESE Sauerwiesen 6 67661
Kaiserslautern Germany freimut@iese.fhg.de. J.J.M.
Trienekens Frits Philips; Institute Eindhoven University of
Technology Den Dolech 2 5600 MB Eindhoven The
Netherlands j.j.m.trienekens@tm.tue.nl. The Importance of
Life Cycle Modeling to Defect Detection and Prevention.
Software Technology and Engineering Practice, 2002. STEP
2002. Proceedings. 10th International Workshop on.
Proceedings of the 10th International Workshop on Software
Technology and Engineering Practice (STEP’02) 0-7695-1878-
8/02 $17.00 © 2002 IEEE.

19. M. Butcher, H. Munro & M. Butcher, "Improving
software testing via ODC: Three case studies", IBM
Systems Journal, Vol. 41, No. 1, pp.31-44 (2002).

https://researcher.watson.ibm.com/researc
her/view_group.php?id=480

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue IV, APRIL/2018

ISSN NO : 2249-7455

http://ijamtes.org/260

