
STRONG ALGORITHM FOR DISCRETE TOMOGRAPHY 

WITH GRAY VALUE ESTIMATION  

 

M.AnanthaLakshmi ¹, Dr.Prof.P.Kailasapathi ², Dr.A.Sanjeevi Kumar ³ 

                                    1(Electronics and Communication Engineering / 

Meenakshi College of Engineering,India) 

                     2(Electrical Engineering / Annamalai University,India) 

    3(Electronics and Communication Engineering / 

Meenakshi Academy of Higher Education and Research,India) 

 

 

ABSTRACT 

TVR-DART with mechanized dim esteem estimation. This calculation is more strong and robotized 

than the first DART calculation and is gone for imaging of articles comprising of just a couple of various 

material organizations, each comparing to an alternate dark incentive in the remaking. 

 

INTRODUCTION 

 
COMPUTED TOMOGRAPHY 

1.Conventional X-ray Images 

All x-ray imaging is based on the absorption of x rays as they pass through the different parts of a 

patient's body. Depending on the amount absorbed in a particular tissue such as muscle or lung, a 

different amount of x rays will pass through and exit the body. The amount of x rays absorbed 

contributes to the radiation dose to the patient. During conventional x-ray imaging, the exiting x rays 

interact with a detection device (x-ray film or other image receptor) and provide a 2-dimensional 

projection image of the tissues within the patient's body - an x-ray produced "photograph" called a 

"radiograph." The chest x ray is the most common medical imaging examination. During this 

examination, an image of the heart, lungs, and other anatomy is recorded on the film. 

 

2.Computed Tomography (CT) 

Although also based on the variable absorption of x rays by different tissues, computed tomography 

(CT) imaging, also known as "CAT scanning" (Computerized Axial Tomography), provides a different 

form of imaging known as cross-sectional imaging. The origin of the word "tomography" is from the 

Greek word "tomos" meaning "slice" or "section" and "graphe" meaning "drawing." A CT imaging 

system produces cross-sectional images or "slices" of anatomy, like the slices in a loaf of bread. The 

cross-sectional images are used for a variety of diagnostic and therapeutic purposes. 

1. A motorized table moves the patient  through a circular opening in the CT imaging system. 

2. As the patient passes through the CT imaging system, a source of x rays rotates around the inside 

of the circular opening. A single rotation takes about 1 second. The x-ray source produces a 

narrow, fan-shaped beam of x rays used to irradiate a section of the patient's body The thickness 

of the fan beam may be as small as 1 millimeter or as large as 10 millimeters. In typical 

examinations there are several phases; each made up of 10 to 50 rotations of the x-ray tube around 

the patient in coordination with the table moving through the circular opening. The patient may 

receive an injection of a "contrast material" to facilitate visualization of vascular structure. 
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3. Detectors on the exit side of the patient record the x rays exiting the section of the patient's body 

being irradiated as an x-ray "snapshot" at one position (angle) of the source of x rays. Many 

different "snapshots" (angles) are collected during one complete rotation. 

4. The data are sent to a computer to reconstruct all of the individual "snapshots" into a cross-

sectional image (slice) of the internal organs and tissues for each complete rotation of the source 

of x rays. 

 

TOMOGRAPHY 
 

Tomography is imaging by sections or sectioning, through the use of any kind of penetrating wave. 

The method is used in radiology, archaeology, biology, atmospheric science, geophysics, 

oceanography, plasma physics, materials science, astrophysics, quantum information, and other areas 

of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and 

γράφω graphō, "to write" (see also Etymology). A device used in tomography is called a tomograph, 

while the image produced is a tomogram.In many cases, the production of these images is based on the 

mathematical procedure tomographic reconstruction, such as X-ray computed tomography technically 

being produced from multiple projectional radiographs. Many different reconstruction algorithmsexist. 

Most algorithms fall into one of two categories: filtered back projection (FBP) and iterative 

reconstruction (IR). These procedures give inexact results: they represent a compromise between 

accuracy and computation time required. FBP demands fewer computational resources, while IR 

generally produces fewer artifacts (errors in the reconstruction) at a higher computing cost.[1] 

Although MRI and ultrasound are transmission methods, they typically do not require 

movement of the transmitter to acquire data from different directions. In MRI, both projections and 

higher spatial harmonics are sampled by applying spatially-varying magnetic fields; no moving parts 

are necessary to generate an image. On the other hand, since ultrasound uses time-of-flight to spatially 

encode the received signal, it is not strictly a tomographic method and does not require multiple 

acquisitions at all. 

 

GRAY VALUE ESTIMATION 

                   Grayscale images are distinct from one-bit bi-tonal black-and-white images, which in the 

context of computer imaging are images with only the two colors, black, and white (also 

called bilevel or binary images). Grayscale images have many shades of gray in between. 

 

EXISTING SYSTEM 

         Existing algorithms under noisy conditions from a small number of projection images and/or 

from a small angular range. 

 

PROPOSED SYSTEM 
 

        The new algorithm requires less effort on parameter tuning compared with the original DART 

algorithm. With TVR-DART, we aim to provide the tomography society with a easy-to-use and robust 

algorithm for DT.Electron tomography data sets show thatTVR-DART is capable of providing more 

accurate reconstruction 
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IMAGE RECONSTRUCTION 

               Image reconstruction is the creation of a two- or three-dimensional image from scattered or 

incomplete data such as the radiation readings acquired during a medical imaging study. For some 

imaging techniques, it is necessary to apply a mathematical formula to generate a readable and usable 

image or to sharpen an image to make it useful. In computed tomography (CT) scanning, for example, 

image reconstruction can help generate a three-dimensional image of the body from a series of 

individual camera images. 

               Several issues pose a problem with image reconstruction. The first is noise meaningless data 

that can interrupt the clarity of an image. In medical imaging, noise can occur as a result of patient 

movement, interference, shadowing and ghosting. For example, one structure in the body might 

overshadow another and make it hard to spot. Filtration for noise is one aspect of image reconstruction. 

               Another issue is scattered or incomplete data. With something such as an X-ray, the image is 

taken in one film exposure, where X-rays pass through the area of interest and create an image. In other 

techniques, a patient might be bombarded with radiation or subjected to a magnetic field, generating a 

substantial amount of data that needs to be assembled to create a picture. The immediate output is not 

readable or meaningful to a human, and it needs to be passed through an algorithm to generate a picture. 

 

 

COMPRESSIVE SENSING 

            Compressed Sensing is to recover ‘high dimensional’ signals from the mere knowledge ‘low-

dimensional’ measurements. To state such a problem in its full generality, we assume that the signals 

xlive in a signal space and that they are sampled to produces measurements living in a measurement 

space. We call the map the measurement map  note that it can always be assumed to be subjective by 

reducing We wish to recover the signal i.e. we wish to find a reconstruction map such that.. Since a 

linear map cannot be injective, the reconstruction identity cannot be valid for all signals. Instead, we 

impose the signals to belong to a recoverable class Typically, the latter class is taken to be the set of all 

s-sparse vectors, i.e. the set of all vectors with no more than s nonzero components.  

1. Minimal Number of Measurements 

        Given a sparsity level s, we want to know how few measurements are necessary to recovers-sparse 

vectors. This depends on the signal and measurement spaces and on thepossible restrictions imposed on 

the measurement and reconstruction maps. Inothers words, We shall distinguish several cases according 

to the underlying fields of the signal andmeasurement spaces.  

2. Totally Positive Matrices 

A square matrix M is called totally positive, resp. totally nonnegative, ifdet(MI;J ) > 0; resp. det(MI;J ) 

_ 0; for all index sets I and J of same cardinality. Here MI;J represents the submatrix of M formed by 

keeping the rows indexed by I and the columns indexed by J.Let us now suppose that m = 2s. We 

consider an totally positive matrix M, fromwhich we extract m rows indexed by a set I to form an m_N 

submatrix A. For each indexset J of cardinality m = 2s, the submatrix AJ := MI;J is invertible. Therefore, 

for anynonzero 2s-sparse vector,.This establishes Condition . Thus, the linear  in particular,continuous 

and antipodal measurement map defined by f(x) = Ax allows reconstructionof every s-sparse vector 

from m = 2s measurements. This completes our proof, so long as we can exhibit a totally positive matrix 

M. We takethe classical example of a Vandermonde matrix.  

3.Reed-Solomon Decoding 

       If the m_N matrix A is obtained from an totally positive matrixby selecting m of its rows, then the 

measurement map defined by f(x) = Ax,allows to reconstruct every s-sparse vector with only m = 2s 

measurements. In this case,the reconstruction map is given by to find g(y) in a straightforward way, it 

is required to perform a combinatorial searchwhere alloverdetermined linear systems, have to be solved. 
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Thisis not feasible in practice. In this chapter, we shall introduce a practical reconstructionprocedure 

that seems to do the job with only m = 2s measurements. This procedure,however, has important faults 

that we shall expose. 

 

IMAGE SEGMENTATION 

Image segmentation is the process of partitioning a digital image into multiple segments 

(sets of pixels, also known as super-pixels). The goal of segmentation is to simplify and/orchange the 

representation of an image into something that is more meaningful and easier to analyze. Image 

segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. More 

precisely, image segmentation is the process of assigning a label to every pixel in an image such that 

pixels with the same label share certain characteristics.The result of image segmentation is a set of 

segments that collectively cover the entire image, or a set of contours extracted from the image 

(see edge detection). Each of the pixels in a region are similar with respect to some characteristic or 

computed property, such as color, intensity, or texture. Adjacent regions are significantly different with 

respect to the same characteristic(s). When applied to a stack of images, typical in medical imaging, the 

resulting contours after image segmentation can be used to create 3D reconstructions with the help of 

interpolation algorithms like Marching cubes. 

 

APPLICATIONS 

       Volume segmentation of a 3D-rendered CT scan of the thorax: The anterior thoracic wall, the 

airways and the pulmonary vessels anterior to the root of the lung have been digitally removed in order 

to visualize thoracic. 

  

THRESHOLDING 

          The simplest method of image segmentation is called the thresholding method. This method is 

based on a clip-level (or a threshold value) to turn a gray-scale image into a binary image. There is also 

a balanced histogram thresholding.The key of this method is to select the threshold value (or values 

when multiple-levels are selected). Several popular methods are used in industry including the 

maximum entropy method, Otsu's method (maximum variance), and k-means clustering.Recently, 

methods have been developed for thresholding computed tomography (CT) images. The key idea is 

that, unlike Otsu's method, the thresholds are derived from the radiographs instead of the (reconstructed) 

image.  

        New methods suggested the usage of multi-dimensional fuzzy rule-based non-linear thresholds. In 

these works decision over each pixel's membership to a segment is based on multi-dimensional rules 

derived from fuzzy logic and evolutionary algorithms based on image lighting environment and 

application.  

 

CLUSTERING METHODS 

           Image after running k-means with k = 16. Note that a common technique to improve 

performance for large images is to downsample the image, compute the clusters, and then reassign the 

values to the larger image if necessary 

         The K-means algorithm is an iterative technique that is used to partition an 

image into K clusters. The basic algorithm is 

1. Pick K cluster centers, either randomly or based on some heuristic method, for example K-

means++ 

2. Assign each pixel in the image to the cluster that minimizes the distance between the pixel and 

the cluster center 

3. Re-compute the cluster centers by averaging all of the pixels in the cluster 

4. Repeat steps 2 and 3 until convergence is attained (i.e. no pixels change clusters) 
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In this case, distance is the squared or absolute difference between a pixel and a cluster center. The 

difference is typically based on pixel color, intensity, texture, and location, or a weighted combination 

of these factors. K can be selected manually, randomly, or by a heuristic. This algorithm is guaranteed 

to converge, but it may not return the optimal solution. The quality of the solution depends on the initial 

set of clusters and the value of K. 

 

COMPRESSION BASED METHODS 

Compression based methods postulate that the optimal segmentation is the one that minimizes, over all 

possible segmentations, the coding length of the data. The connection between these two concepts is 

that segmentation tries to find patterns in an image and any regularity in the image can be used to 

compress it. The method describes each segment by its texture and boundary shape. Each of these 

components is modelled by a probability distribution function and its coding length is computed as 

follows: 

1. The boundary encoding leverages the fact that regions in natural images tend to have a smooth 

contour. This prior is used by Huffman coding to encode the difference chain code of the 

contours in an image. Thus, the smoother a boundary is, the shorter coding length it attains. 

2. Texture is encoded by lossy compression in a way similar to minimum description 

length (MDL) principle, but here the length of the data given the model is approximated by the 

number of samples times the entropy of the model. The texture in each region is modeled by 

a multivariate normal distribution whose entropy has a closed form expression. An interesting 

property of this model is that the estimated entropy bounds the true entropy of the data from 

above. This is because among all distributions with a given mean and covariance, normal 

distribution has the largest entropy. Thus, the true coding length cannot be more than what the 

algorithm tries to minimize. 

For any given segmentation of an image, this scheme yields the number of bits required to encode that 

image based on the given segmentation. Thus, among all possible segmentations of an image, the goal 

is to find the segmentation which produces the shortest coding length. This can be achieved by a simple 

agglomerative clustering method. The distortion in the lossy compression determines the coarseness of 

the segmentation and its optimal value may differ for each image. This parameter can be estimated 

heuristically from the contrast of textures in an image. For example, when the textures in an image are 

similar, such as in camouflage images, stronger sensitivity and thus lower quantization is required. 

 

HISTOGRAM – BASED METHODS 

Histogram-based methods are very efficient compared to other image segmentation methods because 

they typically require only one pass through the pixels. In this technique, a histogram is computed from 

all of the pixels in the image, and the peaks and valleys in the histogram are used to locate the clusters in 

the image. Coloror intensity can be used as the measure. 

         A refinement of this technique is to recursively apply the histogram-seeking method to clusters in 

the image in order to divide them into smaller clusters. This operation is repeated with smaller and 

smaller clusters until no more clusters are formed. 

One disadvantage of the histogram-seeking method is that it may be difficult to identify significant 

peaks and valleys in the image. 

          Histogram-based approaches can also be quickly adapted to apply to multiple frames, while 

maintaining their single pass efficiency. The histogram can be done in multiple fashions when multiple 

frames are considered. The same approach that is taken with one frame can be applied to multiple, and 

after the results are merged, peaks and valleys that were previously difficult to identify are more likely 

to be distinguishable. The histogram can also be applied on a per-pixel basis where the resulting 

information is used to determine the most frequent color for the pixel location. This approach segments 
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based on active objects and a static environment, resulting in a different type of segmentation useful 

in video tracking. 

1.Cumulative histogram 

          A cumulative histogram is a mapping that counts the cumulative number of observations in all of 

the bins up to the specified bin. That is, the cumulative histogram Mi of a histogram mj is defined as: 

             Mi = Σ mj 

2.Number of bins and width 

          There is no "best" number of bins, and different bin sizes can reveal different features of the data. 

Grouping data is at least as old as Graunt's work, but no systematic guidelines were given until Sturges's 

work. Using wider bins where the density of the underlying data points is low reduces noise due to 

sampling randomness; using narrower bins where the density is high (so the signal drowns the noise) 

gives greater precision to the density estimation. Thus varying the bin-width within a histogram can be 

beneficial. Nonetheless, equal-width bins are widely used. 

          Some theoreticians have attempted to determine an optimal number of bins, but these methods 

generally make strong assumptions about the shape of the distribution. Depending on the actual data 

distribution and the goals of the analysis, different bin widths may be appropriate, so experimentation 

is usually needed to determine an appropriate width. There are, however, various useful guidelines and 

rules of thumb.[ 

The number of bins k can be assigned directly or can be calculated from a suggested bin width h as: 

         K = [ max x – min x / h ] 

The braces indicate the ceiling function. 

3.Square-root choice 

k =  n 

which takes the square root of the number of data points in the sample (used by Excel histograms and 

many others).  

3.Sturges' formula 

Sturges' formula[11] is derived from a binomial distribution and implicitly assumes an approximately 

normal distribution. 

                     K = [ log2 + 1] 

It implicitly bases the bin sizes on the range of the data and can perform poorly if n < 30, because the 

number of bins will be small—less than seven—and unlikely to show trends in the data well. It may 

also perform poorly if the data are not normally distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS AND DISCUSSION 
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 Convergence of gray value estimation assum of absolute errors of the estimated gray values through 

iterations.  

 

CONCLUSIONS 
The algorithm is aimed at tomographic reconstruction of objects consisting of a few different 

material compositions, each approximately corresponding to a constant gray value in the reconstruction. 

By defining a soft segmentation function within the objective function of the reconstruction algorithm, 

TVR-DART smoothly steers the solution toward discrete Gray values while minimizing the total 

variation of the boundaries of the discrete solution. 
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