# ANALYSIS AND DESIGN OF BEAMS USING SPREAD SHEET TOOL

# R. Rajasekaran

Lecturer(SG) Department of Civil Engineering, Seshasayee Institute of Technology, Tiruchirappalli, TamilNadu, India rsekar1969@gmail.com

## ABSTRACT

The manual design and analysis of beams for even a small structure is laborious and time consuming. The use of sophisticated design software involves high cost and software skill. This paper deals with the development of simple tool using spread sheet for analysis and design of beams for small buildings. In the first step the structural beam layout, grouping of beams and loading diagrams are manually done. Based on this, a excel spread sheet has been developed for to calculate the bending moment and shear force. For analysis of design moments and Reinforcements another spread sheet is developed. A sample analysis and design is presented and it shows the satisfactory result. This analysis and design of beams using spread sheet tool reduces the complexity of calculation and time.

**KEYWORDS**: Beams, Spread Sheet, Bending moment, Shear Force.

# **1.0INTRODUCTION**

A RCC beam is a flexural structural member that carries lateral loads. The loads carried by a beam are transferred to column which is then transferred to foundations. Generally, Beams are subjected to bending moment and shear force. The common types of concrete beams are singly reinforced rectangular beams, doubly reinforced rectangular beams and flanged beams. For simple structures the singly reinforced rectangular beams are used. In this paper a single storey building with less than 4m span is taken. Due to the well known advantages, the limit state method is used for design of beams in this proposed building. The computer program has been developed to do the analysis in moment distribution method (exact method) to find the bending moment and shear. Section 2 presents the detailed building plan, the structural layout and grouping of beams. The analysis of beam is presented in section 3 and design is given in section 4. Finally it is concluded.

#### **1.1 SAMPLE STRUCTURE**

A single storey small office building is taken as a sample structure in this paper. The plan of the sample building is shown in figure.1. The structural layout has been developed for the sample structure and it is shown in figure 2. It consists of single span beams and three span continuous beams. From the beam layout, the beams are grouped into 4 categories based on loads, end conditions and span. The loads are uniformly distributed. The beams are simply supported at discontinuous ends and continuous over intermediate support with unequal span. The highest variation in span is RB3 and RB4 which has longest span 3230mm and the lowest is 2280mm. This is 29.4% of the longest span. The grouping of beams is done and is tabulated in table 1.

| Category<br>No. | Type of beam                                | Beam Mark |
|-----------------|---------------------------------------------|-----------|
| 1               | 3 Span continuous beams simply supported at | RB1       |
|                 | ends                                        |           |
| 2               | Single span simply supported beam           | RB2       |
| 3               | 3 Span continuous beams simply supported at | RB3       |
|                 | ends                                        |           |
| 4               | 3 Span continuous beams simply supported at | RB4       |
|                 | ends                                        |           |

### Table.1. Grouping of Beams



GROUND FLOOR PLAN Figure. 1. Building Plan



Figure. 2. Structural Layout Beams

# 2.0ANALYSIS OF BEAMS IN SAMPLE STRUCTURE

The structural layout shows that the maximum span is less than 4000mm, so that singly reinforced rectangular beams are more suitable for the proposed structure.

## 2.1 LOADING DIAGRAM

Initially the loading diagram is developed from simple manual calculation of loads transferred from the slab and wall. The corresponding loading diagram is given in figure.3. The beam members are simply connected except at the continuous ends of a continuous beam. Accordingly, beams RB2 is treated as single span simply supported beam. Beams are continuous in RB1, RB3, and RB4 and simply supported at ends.



Figure. 3. Loading Diagram

#### **2.2 ANALYSIS OF BEAM MEMBER**

Calculations of exact bending moments in single spans beams will not pose any problem. For single span beams with uniformly distributed loads for various end conditions, the shear and bending moment are directly computed by IS coefficients method. Difficulty arises in determination of bending moments in continuous beams. Codes prescribe coefficients continuous beams with approximately equal spans (span not exceeding 15% of the longest and carrying UDL).

In practice, the analysis of a multispan continuous beam can be simplified by assumptions and approximations of considering number of independent single span beams or group of typical multispan beams. The exact analysis of a continuous beam manually is extremely laborious and subjected to human errors. For analysis of these beams, Excel spread sheet has been developed. The data are taken from the loading diagram shown in figure 3 for the spread sheet. The developed spread sheet is shown in figure.4. Out of four categories, RB2 has single span and analysis could be done by applying Moment coefficient. But, for the others which have 3 different spans with different loadings, the Excel spread sheet helps to determine the internal forces. The input data are span, loads, end conditions for each span. The input consists of span, loads, and end conditions are edited for each continuous beam RB1, RB3 AND RB4. After entering the input data, the internal forces shear, bending moments, reaction at supports are displayed automatically. The sample Excel spread sheet snapshot for RB1 is shown below in Figure.4.

| 0  | a) 🖬 🤊            | -          | 8 🛕 🔹         |                 | - 779               |         |               |        |            | -      |           |   |
|----|-------------------|------------|---------------|-----------------|---------------------|---------|---------------|--------|------------|--------|-----------|---|
| 6  | Home              | Inse       | rt Page Li    | ayout For       | mulas               | Data    | Review Vie    | tw     |            |        |           |   |
| 1  | 🚆 🔏 Cut           | í.         | Calibri       | - 11            | - A                 | · = =   | - 20-         | Wrap   | Text       | Genera |           |   |
| P  | Col               | ру         | n r           | TT _][[[[]]]    | A                   |         | e can che che |        |            |        |           |   |
|    | 🗧 🍼 For           | mat Painte | er 🖬 🖌        | u ⊡ •           | <u>v</u> . <u>a</u> |         | e en lair sir | Merge  | a Center - | 1.23   | 70 .00 .0 | F |
|    | Clipboar          | d          | 9             | Font            |                     | 6 J     | Align         | ment   | 9          | N      | umber 5   |   |
| 0  | Security W        | arning A   | utomatic upda | ate of links ha | been dis            | abled   | options       |        |            |        |           |   |
| Ť  |                   |            |               |                 |                     |         |               |        |            |        |           |   |
| _  | R9                |            | - (9          | fx              |                     |         |               |        |            |        |           |   |
|    | Α                 | В          | С             | D               | E                   | F       | G             | Н      | 1          | J      | к         | 1 |
| 1  |                   |            |               |                 |                     |         | _             |        |            |        |           |   |
| 2  | THREE SPAI        | N CONTIN   | UOUS BEAM     | ENTER NAME      |                     | RB1     |               |        |            |        |           |   |
| 3  | DATA              |            |               | Enter in bo     | ox only             |         | SPAN-1        | SPAN-2 | SPAN-3     |        |           |   |
| 4  | Span1             | L          |               |                 |                     |         | 3.67          | 3.64   | 3.5        | m      |           |   |
| 5  | Loads             |            |               |                 |                     |         |               |        |            |        |           |   |
| 6  | UDL in spa        | an1        | W             |                 |                     |         | 13.4          | 10.1   | 13.2       | kn/m   |           |   |
| 7  | Length of         | UDL        | S             |                 |                     |         | 3.67          | 3.64   | 3.5        | m      |           |   |
| 8  | UDL Dista         | nce from   | left suppor   | t to middle     | of UDL              | а       | 1.84          | 1.82   | 1.75       | m      |           |   |
| 9  | Point load        | 11         |               |                 |                     | w1      | 0             | 0      | 0          | kn     |           |   |
| 10 | <b>Distance</b> f | from left  | support       |                 | X2                  | с       | 0             | 0      | 0          | m      |           |   |
| 11 | Point load        | 12         |               |                 |                     | w2      | 0             | 0      | 0          | kn     |           |   |
| 12 | Distance f        | from left  | support       |                 |                     | X2      | 0             | 0      | 0          | m      |           |   |
| 13 | Point load        | <b>13</b>  |               |                 |                     | W3      | 0             | 0      | 0          | kn     |           |   |
| 14 | <b>Distance</b> f | from left  | support       |                 |                     | X3      | 0             | 0      | 0          | m      | -         |   |
| 15 | Breadth o         | fbeam      |               |                 |                     |         | 0.23          | 0.23   | 0.23       | m      | •         |   |
| 16 | Depth of I        | beam       |               |                 |                     |         | 0.3           | 0.3    | 0.3        | m      |           |   |
| 17 | Type of le        | ft exter   | e end supp    | o Enter         |                     | 1 55    | 1             |        | 1          |        |           |   |
| 18 |                   |            |               |                 |                     | 0 Fixed |               |        |            |        |           |   |
| 19 |                   |            |               |                 |                     |         |               |        |            |        |           |   |
| 20 |                   |            |               |                 |                     |         |               |        |            |        |           |   |

Figure. 4. Excel Spread Sheet: Input Parameters



Figure.5. Bending Moment Diagram

Figure.6. Shear Force Diagram

The bending moment and shear force diagrams are generated corresponding to the input parameters. The magnitudes of BM and SF are shown in Figure.5 and Figure.6 respectively.

It is observed that the maximum BM normally occurs at penultimate support and end span in the continuous beams. The maximum sagging moment occurs at mid span of the single span simply supported beam. The maximum shear occurs at the supports. This data are given as input for the design of beams.

# **3.0DESIGN OF BEAMS**

#### **3.1 INPUT PARAMETERS**

For the analysis of design of beams, an excel spread sheet has been developed. The output values of the previous section are given as input to this developed spread sheet. The inputs are Trail section, design moment, effective cover. The grade of concrete is kept as M20 and Fe415 for steel. The beam is designed for limit state for flexure. The input details are shown in below figure.7.

| Cin | 1         |                                           | 🔼 🔹          |                  |              |         |               |            |                     |
|-----|-----------|-------------------------------------------|--------------|------------------|--------------|---------|---------------|------------|---------------------|
|     | Home      | Insert                                    | Page Li      | ayout Fo         | ormulas (    | Data I  | Review Vi     | ew.)       |                     |
| 1   | & cut     |                                           | Arial        | ~ 10             | *   A* A*    | ) (= =  | -~~           | 📑 Wrap     | Text                |
| Pas | te Eor    | at Painter                                | BI           | <u>u</u> -   🖽 - | 3 - A -      |         |               | Merg       | e & Center *        |
|     | Clipboard | 1 (2                                      |              | Font             | 5            |         | Align         | ment       | 6                   |
|     | Q116      | -                                         | G            | fx               |              |         |               |            |                     |
|     | A         | В                                         | С            | D                | E            | F       | G             | н          | I I                 |
| 82  |           |                                           |              |                  |              | 127     |               |            | /                   |
| 83  |           |                                           |              |                  |              |         |               |            |                     |
| 84  |           |                                           | DESIGN       | OF BEAM          |              | Beam ma | ark           | RB1        |                     |
| 85  |           |                                           |              |                  |              |         |               |            | 5                   |
| 86  |           |                                           | DATA         |                  |              |         |               | Enter in b | ox only             |
| 87  |           | 1.                                        | breadth of   | fbeam            |              |         | b             | 230        | mm                  |
| 88  |           | 2                                         | Total Dep    | th of beam       |              |         | D             | 300        | mm                  |
| 89  |           | 3                                         | Effective of | cover to tens    | sion steel   |         | ď             | 37         | mm                  |
| 90  |           | 4                                         | Effective of | cover to con     | npression st | eel     | ďc            | 36         | mm                  |
| 91  |           | 5                                         | Factored     | bending mo       | ment         |         | Mu            | 21.77      | kn.m                |
| 92  |           | 6                                         | Grade of o   | concrete         |              |         | fck           | 20         | ) N/mm <sup>2</sup> |
| 93  |           | 7                                         | Grade of a   | steel            |              |         | fy            | 415        | 5 N/mm <sup>2</sup> |
| 94  |           | 8                                         | Depth of f   | lange            |              |         | Df            | 0          | mm (                |
| 95  |           | 9 Diameter of tension steel Qt 12 mm      |              |                  |              |         |               |            |                     |
| 96  |           | 10 Diameter of compression steel Qc 10 mm |              |                  |              |         |               |            |                     |
| 97  |           | 11 Span of beam(c/c of supports) L 3.67 m |              |                  |              |         |               |            |                     |
| 98  |           | 12                                        | Type of B    | eam              |              | Case    | Enter case no | 2          | 2                   |
| 99  |           |                                           | both ends    | simply sup       | ported       |         | 1             |            |                     |
| 100 |           |                                           | One SS+      | other fixed o    | or continuou |         | 2             |            |                     |
| 101 |           |                                           | both ends    | continuous       | 1            |         | 3             |            |                     |

Figure.7. RB1 Input Parameter

| 0     | 1 1 1    | - C - 🛱             | 🛕 ) 🔹             |                |           |                            |         |                        |             |      |
|-------|----------|---------------------|-------------------|----------------|-----------|----------------------------|---------|------------------------|-------------|------|
|       | Home     | Insert              | Page La           | yout Fo        | rmulas I  | Data Re                    | view Vi | ew                     |             |      |
| ľ     | Cut      |                     | Arial             | ~ 10           | * A *     | · A A                      |         |                        | 📑 Wrap Text |      |
| Paste |          |                     | BI                | <u>u</u> - 🗖 - | 2· A ·    | <u>≫· A</u> · <b>E</b> ≡ 3 |         | 🖀 🎼 🔛 Merge & Center 🕤 |             |      |
|       | Clipboar | d G                 |                   | Font           |           |                            | Align   | ment                   | 5           | Numb |
| _     | P11      | •                   | (*                | fx             |           |                            |         |                        |             |      |
| 4     | A        | В                   | С                 | D              | E         | F                          | G       | Н                      | 1           | J    |
| 1     |          |                     |                   |                |           |                            |         |                        |             |      |
| 2     |          | Design of           | beam res          | sults:         | As singly | reinforced                 | beam    |                        |             |      |
| 3     |          | Beam mai            | r <mark>k:</mark> |                | RB1       |                            |         |                        | j i         |      |
| 4     | 1        | Grade of co         | oncrete           | 1              |           | fck                        | 20      | Мра                    |             |      |
| 5     | 2        | Grade of st         | eel               |                |           | fy                         | 415     | Mpa                    |             |      |
| 6     | 3        | Span of bea         | am(c/c of s       | supports)      |           | L                          | 3.67    | m                      |             |      |
| 7     | 4        | Size of bea         | im                |                | ()        |                            |         |                        |             |      |
| 8     |          | a)breath of         | beam:             | i i            |           | b                          | 230     | mm                     | i i         |      |
| 9     | (        | b)Over all d        | lepth of be       | am             |           | D                          | 300     | mm                     | i i         |      |
| 10    |          | c)Effective         | cover             |                |           | ď                          | 37      | mm                     |             |      |
| 11    | 5        | Steel read Ast(mm2) |                   |                | 251       |                            |         |                        |             |      |
| 12    |          | Bottom ten          | sion steel        | a)Diameter     | r         |                            | 12      | mm                     |             |      |
| 13    |          |                     |                   | b)Numbers      | 3         |                            | 3       | Nos.                   |             |      |
| 4.4   | 7        |                     |                   |                |           |                            |         |                        |             |      |

Figure.8. RB1 Design Results

The section of each beam has been designed and the design results are obtained. The sample output results of beam RB1 is displayed in Figure.8. Except RB2, All the three beams have been designed as singly reinforced beam and the required area of steel for the design BM is displayed as shown in Figure.8. RB2 is designed as doubly reinforced beam since it exceeds the limiting percentage of steel as shown in Figure. 9. The results are consolidated in table: 2.

| 0  |                                  | * C : 🛱      |              |                  |           |             |               |            |               |         |   |
|----|----------------------------------|--------------|--------------|------------------|-----------|-------------|---------------|------------|---------------|---------|---|
|    | Home                             | Insert       | Page La      | yout Fo          | rmulas    | Data Re     | eview Vie     | w          |               |         |   |
| 1  | Cut                              | ov.          | Arial        | - 10             | * A A     | ] [= =      | <b>=</b> &/-  | 📑 Wrag     | o Text        | General |   |
| Pa | ste 🦪 Format Painter 🖪 I U - 🖽 - |              |              | <b>u</b> → (⊞ +) | 3- A -    | E E         | 書 評 課         | Merg       | ge & Center + | · % ,   |   |
|    | Clipboard 19 Font                |              |              | Font             | 00        | 8 L         | Align         | Number     |               |         |   |
|    | 014                              | -            | 0            | f <sub>x</sub>   |           |             |               |            |               |         |   |
|    | A                                | В            | С            | D                | E         | F           | G             | н          | 1             | J       |   |
| 1  |                                  |              |              |                  |           |             |               |            |               |         |   |
| 2  |                                  | Design of    | beam res     | sults:           | As singly | reinforced  | <u>l beam</u> |            |               |         | - |
| 3  |                                  | Beam mai     | r <u>k:</u>  |                  | RB2       |             |               |            |               |         | - |
| 4  | 1                                | Grade of co  | oncrete      |                  |           | tck         | 20            | Мра        |               |         | - |
| 5  | 2                                | Grade of st  | eel          | (upporte)        |           | ту          | 415           | мра        | ++            |         | - |
| 7  | 3                                | Size of hea  | m            | supports         | 2         | L.          | 5.07          | 10.        |               |         | - |
| 8  |                                  | a)breath of  | beam:        |                  |           | b           | 230           | mm         |               |         |   |
| 9  |                                  | b)Over all d | lepth of be  | am               |           | D           | 300           | mm         |               |         |   |
| 10 |                                  | c)Effective  | cover        |                  |           | ď           | 37            | mm         |               |         |   |
| 11 | 5                                | Steel        | reqd.Ast(    | mm2)             | It cannot | be design   | ed as singl   | y reinford | ed section    |         |   |
| 12 |                                  | Bottom ten   | sion steel   | a)Diameter       | r         |             | 0             | mm         |               |         | - |
| 13 |                                  |              |              | b)Numbers        | 3         |             | 0             | Nos.       |               |         |   |
| 14 |                                  |              |              |                  |           |             |               |            |               |         | - |
| 15 |                                  | Design of    | beam res     | sults:           | As Doubly | reinforce   | ed beam       |            |               |         | - |
| 10 | - 1                              | Grade of co  | K:           | RDZ              |           | fek         | 20            | Moa        |               |         | - |
| 18 | 2                                | Grade of st  | eel          |                  |           | fv          | 415           | Moa        |               |         | - |
| 19 | 3                                | Span of be   | am(c/c of    | supports)        |           | Ľ.          | 3.67          | m          |               |         | 1 |
| 20 | 4                                | Size of bea  | im           |                  |           |             |               |            |               |         |   |
| 21 |                                  | a)breath of  | beam:        |                  |           | b           | 230           | mm         |               |         |   |
| 22 |                                  | b)Over all d | lepth of be  | am               |           | D           | 300           | mm         |               |         |   |
| 23 |                                  | c)Effective  | cover for te | ension steel     |           | ď           | 37            | mm         |               |         |   |
| 24 |                                  | d)Effective  | cover for c  | ompression       | steel     | ďc          | 35            | mm         |               |         | - |
| 25 | 5                                | Steel reinfo | rcement      | It is desig      | ned as do | ubly reinfo | orced section | on         |               |         | - |
| 26 |                                  | Tension ste  | el           | Ast(mm*)         | 603       |             |               |            |               |         |   |
| 21 |                                  | C            |              | A                | 100       |             |               |            |               |         |   |
| 20 |                                  | Compressi    | on steel     | Asc(mm*)         | 123       |             |               |            |               |         |   |
| 20 |                                  |              |              |                  |           |             | -             |            |               |         | - |
| 24 |                                  |              |              |                  |           |             |               |            |               |         |   |
| 21 |                                  |              |              |                  |           |             |               |            |               |         | _ |

Figure.9. RB2 Design Results

| Category | Details                                            | Support<br>1 | Mid<br>span1 | Support<br>2 | Mid<br>span2 | Support<br>3 | Mid<br>span3 | Support<br>4 |
|----------|----------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Beam     | Moments                                            | 0.00         | 14.51        | -16.09       | 1.51         | -14.35       | 13.04        | 0.00         |
| KDI      | Mu, kN.m                                           | 0.00         | 21.77        | -24.14       | 2.27         | -21.53       | 19.56        | 0.00         |
|          | $\frac{\text{Ast}_{\text{required}}}{\text{mm}^2}$ | 123          | 251          | 282          | 123          | 248          | 223          | 123          |
| Beam     | Moments                                            | 0.00         | 30.47        | 0.00         | -            | -            | -            | -            |
| KB2      | Mu, kN.m                                           | 0.00         | 45.71        | 0.00         | -            | -            | -            | -            |
|          | $Ast_{reqd\&}$<br>$Asc_{reqd}$ ,mm <sup>2</sup>    | 123          | 621<br>123   | 123          | -            | -            |              | -            |
| Beam     | Moments                                            | 0.00         | 11.97        | -11.53       | -3.07        | -9.18        | 10.43        | 0.00         |
| KD3      | Mu, kN.m                                           | 0.00         | 17.96        | -17.29       | -4.61        | -13.77       | 15.65        | 0.00         |
|          | $Ast_{required}, mm^2$                             | 123          | 203          | 195          | 123          | 153          | 175          | 123          |
| Beam     | Moments                                            | 0.00         | 19.81        | -19.32       | 4.79         | -15.47       | 17.07        | 0.00         |
| KB4      | Mu, kN.m                                           | 0.00         | 29.72        | -28.98       | 7.19         | -23.21       | 25.61        | 0.00         |
|          | Ast <sub>required</sub> ,<br>mm <sup>2</sup>       | 123          | 367          | 347          | 123          | 269          | 301          | 123          |

Table: 2 Design moments and Reinforcements (Mu & Ast<sub>required</sub>)

## **4.0CONCLUSION**

The exact analysis of a continuous beam manually is extremely laborious and subjected to human errors.. This paper analyses the design of beams using excel spread sheet tool. The bending moment and shear force diagrams are plotted using spread sheet which considerably reduces the design time. By using the results the RCC beams are designed as per IS 456:2000. The results are compared with sample problems and obtained satisfactory results. Spread sheet is open source software and easily get trained by the users. The spread sheet can also used to design flanged beams apart from rectangular beams.

## **REFERENCES** :

- [1] IS 456:2000,Plain and reinforced concrete-code of practice(Fourth Revision),Bureau of Indian Standards,New Delhi-110002
- [2] IS:875(part1)-Dead loads-Code of practice for design loads(other than Earthquake)for buildings and structures (Second Revision)
- [3] IS:875(part2)-Imposed loads-Code of practice for design loads(other than Earthquake)for buildings and structures (Second Revision)
- [4] Dr.Shah.V.L and Dr.Karve, S.R,"Illustrated Design of Reinforced Concrete Buildings" Structures Publications,Pune,Seventh Edition 2014
- [5] P.C.Varghese "Limit State Design of Reinforced Concrete", 2nd Edition, Prentice-Hall of India Pvt. Ltd., New Delhi, 2002.
- [6] Suryam Tiwari and Vijay Shrivastav, "Development of Design Spreadsheet Tool for R.C.C. Beam Design using V.B.A.", International Journal for Innovative Research in Science & Technology, Vol. 4, Issue 11, April 2018, pp.1-10