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Abstract 

 

In this Paper, we present some basic definitions and facts regarding Laguerre functions over symmetric cones, and their relation 

to representations of Lie groups and Lie algebras. We are particularly interested in Laguerre functions defined over 
  

 Sym  ( R,   n, ) for which we derive their recursion relations through the action of the Lie algebra of the group Sp (2 n, R 

) on certain Hilbert spaces of holomorphic functions over T ( ) . 

 

Introduction 

 

2.1 Laguerre Functions 

 

The ‘classical’ Laguerre functions are defined through the Laguerre polynomials that can be defined in many ways. One way is 

by the Rondriguez formula: 

 e x x  d m 

Definition 2.1.1. The polynomials defined by L m ( x ) 

 

 

 

e  x x  m , x  R  

, m ! dxm 

m,  N , are called Laguerre polynomials.      

 

In terms of the hypergeometric function 1 F1 , the Laguerre polynomials L m ( x) can also be defined as follows: 

 

L   ( x )   (  m 1)  F (  m; 1; x),       
m 

    

1 
      

  
 ( m 1) 

1        

             

where:              

             p ( a ) 
k 

zk 

 ( z )    e  x x z 1dx with Re( z )  0, and p Fq ( a ;  s ; z)  
r 1    

 q    

           k 0  s 1 ( s ) k k ! 

Recall that ( a ) k 
 


 ( a  k ) 
and  ( n  1)  n!. It is clear to see that the set 

   
 

( a ) 
   

              

                

{ 
   ( m 1) 

L m ( x)} forms an orthonormal basis for L2 (    , e x x dx). 
   

  (  m 1)    
               

 

One can define now the Laguerre functions as follows: 
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Definition 2.1.2. The functions defined by l m ( x )  e 

 
x
 L m (2 x ), x  

,m,,are calledLaguerre functions.  

 

It is not hard to show now that {l m ( x)} forms an orthonormal basis for L2      
 ( ,xdx). 

 

It is also known that l v m satisfy certain recursion relations (see [3] p. 273), like the following: 

 

x 
d

 
2
2 l m ( x )  (  1) 

d
 l m ( x )  (2 m    1  

dxdx   

x 
d

 22 l  m ( x )  (2 x    1) 
d

 l  m ( x )  ( x    1)l  m ( x ) 2( m 

dxdx   

x 
d

 22 l  m ( x )  (2 x    1) 
d

 l  m ( x )  ( x    1)l  m ( x ) 2( m 

dxdx  

 

The Laplace Transform of l m ( x) is: 

 

L (l 
 m )( z )    e  ( z | x )l  m ( x ) d  ( x) 

  

  

(
  

m
 

1)
 ( z  1) m ( z 1) 

( m 1)  ( m 1)
 

 

Denote the polynomials on the right-hand side of the equation above by 

 

 
 

x )l ( x)  (2.1) 
m   

 ) l  m1 ( x) (2.2) 
 

1)l  m1 ( x) (2.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q m ( z). Then, {q m ( z)}is an orthogonal basis of the 
 

space of H ( , x 
1dz), where  i.  

 
 

Formulation of Problem  
 
 

Observe that 


 is a symmetric cone, is a Euclidean Jordan algebra, and highest weight representations of 
 

SL2 ( ) on H ( ) are derived through  the action of SL2 ( ) on the tube domain  (the classical upper half-plane). In their  
 
paper, Davidson, Olafsson and Zhang (see [3], also show that one can generate the classical recursion relations (2.1), (2.2) and 

(2.3), by transferring the representations mentioned above on the space L2
 ( 


 , x dx). 
 
 

One wants to check now whether this can be done for other cones and Euclidean Jordan algebras. That is, given a 

symmetric cone V , where V is a Jordan algebra, and a connected semisimple Lie group G, we want to build highest weight 

representations of G on H (T ( )).Then, we want to transfer the representations on L2
 ( , d  ) to establish recursion 

relations for the generalized Laguerre functions, for which we give the basic concepts below. The following cases have been 

settled: 
 
 

(1)  
,V,GSL(  ) (see[3]) 

2  

(2)  Herm  ( n, n), V  Herm( n, n ), G  SU ( n, n ) ( see[4]) 
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In this chapter, we will present the results for the following case:  

 

(3)  Sym  ( n, ), V  Sym( n, ), G  Sp (2n, ) ( see also[1]). 

 

Note that case (1) was done for T (  )  V  i (the classical upper half-plane  ), and gives the classical recursion relations 

including (2.1), (2.2) and (2.3) (see [3]). Case (2) was done for T (  )  iV (right half-plane) and gives a generalization of 

the classical relations (see [4]). Case (3) is treated here also for the right half-plane, and gives a generalization of the classical 

relations as well. 

 

2.1.1 L-invariant Polynomials 

 

Let Eii  be the diagonal n x n matrix with 1 in the ii-position and zeros elsewhere. Then {E11, …, Enn} is a Jordan frame for   

V  Sym ( n, ).Let V
(k) be the +1-eigenspace of the idempotent E11 + … + Ekk acting on V by multiplication. Each V

(k) is a Jordan 

subalgebra and we have: 

 

V (1)   V ( 2)   ...  V ( n)   V . 

 

If detk is the determinant function for V
(k)

 and Pk is orthogonal projection of V onto V
(k)

 then the function  k ( x )  det k Pk ( x) 
 

is the usual kth principal minor for an n x n symmetric matrix; it is homogenous of degree k. In particular  (x): = n (x)= det   

(x). Let m  ( m ,...., m )  n . We say that m  0, if each m  is a nonnegative integer and 
1 n i 

 

m1  m2  ...  mn   0 . Let 
 

  {m | m  0}. 
 
 

For each m  
n , we define the generalized power functions as follows: 

 

 m ( x ) 1
m

1 m
2 ( x )  2 m2 m

3 ( x )....n
m

n ( x).

 

The degree of m is |m| := m1+…+mn. Observe that each generalized power function extends to a holomorphic polynomial on   

V  Sym( n,  ) in a unique way.  
 
 

For each m , we define an L-invariant polynomial m on J by: 

m ( z )  L  m (lz ) dl , z V  

 

where L is the group that fixes e in  and dl is the normalized Haar measure on L. Notice that for the case of , i.e. n=1, we 
 

have  m ( z )   m ( z )  z 
m

 , as L  {1}. 
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Lemma 2.1.3.   If (V ) is the space of all polynomial functions on V   and  (V  )L
 denotes the space of L-invariant 

polynomials, then { } is a basis of (V )L . Furthermore, if 
k 

(V ) 
L 

denotes the space of L-invariant polynomials of 
 m  m0             

degree less than or equal k, then {
m 

} is a basis of  
k 

( J  ) L .        
   | m| k           

Proof. See [22], p. 61-90.               

The lemma above implies that m (e  x) is a linear combination of n | n || m | . This allows us to define the 

   m             
generalized binomial coefficients    from the equation:           

  
n
            

     
 m ( e  x )  

 m       
      n ( x).   

       | n| | m|  

n 
      

2.1.2 The Generalized Gamma Function           

The generalized Gamma function is defined as follows:           

     

  ( m)   e tr ( x)  m ( x ) ( x ) 
d   

      

dx, 

  

     r   

where  x  and m . The  numbers d  and  r  are,  respectively,  the dimension  and  the  rank  of the  Jordan  algebra   

V  Sym ( n, ). Convergence conditions for the integral above, and other properties of  ( m), are given in the following 

proposition. 
  

Proposition 2.1.4. Let m  ( m , m ,...., m )   
n
 . Then the following hold:   

12 n          

1. The integral defining  ( m) converges if  e ( m j ) 
1 

( j 1), where j=1, …, n. 
 

2 
 

          

Furthermore,           

   n ( n1) 
n  1   

       

 

( m)  (2 )  4      mi 
 

(i 1) ,  

2      i1    
 

Where  is the classical Gamma function.  

 

2. Take ej= (0,…,0, 1, 0,…,0)
t
, with 1 in the jth position. Then, m  

n , we have: 
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(
 

a
 

)
   ( m  e j ) 


 

m
 j  


 

1
 


 

1
2 

(
 

j
 

1) 
 

(b ) 


  
(
 
m

 


 
e

 j 
)
  m j   1  

1
2 ( j 1)  

 
 

 

Proof. See Theorem VII.1.1 in [8], p. 123, for (1). Part (2) follows easily from (1).  

 

Let   We correspond  to the multi-index (, …, )00000 and denote the latter by  as well. The context of use 

should distinguish the two. Then, we define: 

( ) 
(m) 

m  ( ) 

 

2.1.4 The Generalized Laguerre Functions 

 

Let >0 and m. Then, the generalized Laguerre polynomials are defined (see [8], p. 343) by: 

 

  m  1   
L m ( x )  ( ) m   

 

n (  x ),   x 

( )n  | n| | m|  

n
     

The generalized Laguerre functions are defined in terms of L m ( x) by:      

    l m ( x )  e tr ( x ) L m (2 x).      

Remark 2.1.5. Notice that for  
 , i.e. n=1, the generalized Laguerre polynomials and functions defined above are 

precisely the classical Laguerre polynomials and functions defined on    (see [3]).      

 
Recall that from Prop. 1.1.11 (b) we know that the measure d p x ( x ) 


P  

p  2d 
 

 2 dx, where , is an H-invariant 
  

           r 

measure on . Define now the following measure:         

    
d  ( x ) ( x ) 

P      
     

dx. 
     

    2      
             

Theorem 2.1.6. The set {l } is an orthogonal basis of  L2
  ( , d  ) 

L
 , the Hilbert space of L-invariant functions in 

 m m0           

L2 ( , d  ).            
              

 

Proof. See Theorem 7.8 in [4], p. 191 
 

 
Finally, observe that by Prop. 1.1.11 (b) it follows that H acts unitarily on 

 

L2 ( , d  ). by the formula: 

 

 

5 

  ( m) 

  ( m) 
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 ( h ) f ( x )  det( h ) f ( h t . x). 

 

2.2 Sp (2 n, ) and Its Lie Algebra sp (2 n, ) 
 

 

In this section, we use a non-standard model of Sp (2 n, ) suitable for the action on the right half-plane. This non-standard 

model is a group G (S) isomorphic to Sp (2 n, ) We describe some important subgroups of G(S). Then, we introduce some 

subalgebras of g , the complexification of the Lie algebra of G(S). 

 
 

 The group Sp (2 n, )  is called the symplectic group and is usually defined as: 

      Sp (2n,  )  { g  SL(2n,  ) | g t Jg  J}, 

where 
 0  1        

J      Defined this way, Sp (2 n,   ) acts on the upper half-plane by linear transformations. 

  1  
0        

 Consider now the map:      

  A   iB  P *(.) P  A B   ), 
Sp (2 n,  )       G ( S )  SL (2 n, 

  iC  D  
C 

D    

where 
 1 0        

P     This map is an isomorphism, in other words  P * Sp (2 n,  ) P  G ( S ) 

 
0 

i        

Hence, the group G(S) is an isomorphic copy of Sp (2 n, ) in SL (2 n, ) , and it can be defined as follows: 

  A  B 
 SL (2 n,  ) | 

 A   iB    
G ( S )       Sp (2 n,  )  

 

D 

   



 

 
C 

   iC 
D    

As in p. 28, we note once again that G (T (  ))  G ( S ) / 

for the action on the right-half plane T(). Consequently, by 

C, and D: 

 
, where denotes the center of G(S), but we will actually use G(S) the 

definition of G(S), we have the following relations among A, B, 

 

A
t
C- C

t
A=0 AB

t
-BA

t
=0 

 

A
t
D-C

t
B=I AD

t
-BC

t
=I 

 

B
t
D-D

t
B=0 CD

t
-DC

t
=0 

 

B
t
C-D

t
A=-I AD

t
-BC

t
=-I 
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This 

 
We will use precisely this copy of Sp (2n, ), namely G(S), to realize an action of Sp (2n, ) on the right half-plane.  

 
action of G(S) on T (), where T ()= S= Sym+ (n, )+ iSym (n, ), is given b y linear transformations as follows:  

 A  B
 

. z  ( Az  B )(Cz  D) 1.




 C   D 




 

It is already shown in Example 1.4.3 that the action above is well defined, using the fact that z   T() if and only if 

z  z *  0  
2 

 

Some important subgroups of G(S) are the following: 

 

 A  B  
 U ( n) K  Stab ( I )   G ( S ) | A  B  U ( n ) 





 


B  A

  
 A 0    
    

1 
 

 GL ( n,  ) H  G (  ) 
0 

t  G ( S ) | A  GL ( n,  ) 
 ( A ) 


  

      

and        

 A  0   
 SU ( n), L  K  H     G ( S ) | A  SU ( n ) 



0 

  



  

 A     
where K is the stabilizer of the identity (it is maximal compact), H is the group that fixes , and L is the intersection of K and H. 
 

We found H by observing that ix + (ix)*=0,  x , as the following proposition suggests:  

 

2.3 Representations of sp (2n, ) on  (T()) 

 

In this section we want to build representations of G(S) and its Lie Algebra g on (S), the Hilbert space of holomorphic 
 

functions on S. Since here T ()= S= Sym
+
 (n,) + iSym (n,), that means d  n ( n 1) and r=n. 

 

2   

 

2.3.1 The Hilbert Space  (T()) 

 

Consider the following Hilbert space of holomorphic functions:  

 

 (T (  )) 

 
 
{ F 

 

| 

 
 

F 

 

: T (  ) 

 

,|| F || 2 },  

 

, 
 
 
where 

 

|| F ||2   T ( ) | F ( x  iy ) |2 ( x )  ( n1) dxdy, 
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with (x)= det (x) and  
  2n   

. Recall that in general: 
     

 n ( n1)  

n 1 
 

 

(4 ) 
 

(  ) 
 

 
2   

    2   
 


d 

  ( m)   e tr ( x) m 
(
 
x
 
)
 r 

dx 
 

 
and 

 

m(x)= 1
m1-m2

(x)2
m2-m3

(x)…n
mn

(x). 

 

It is clear that the norm came from the inner product on  (T ()), which is defined by : 

 
____________ 

( F | G )   T ( ) F ( x  iy ) G ( x  iy )( x )  ( n1) dxdy. 
 
 
Finally, notice that  (T()) is a reproducing kernel Hilbert space (see [4] and [20] for more details). This means that point   

evaluation given by Ez  (F)=F(z) is continuous,  z  T ( ). This 

implies the existence of a kernel 
 
function Kz (T(), such that F (z)= (F|Kz) for all F (T()) and zT(). Set K (z, w)= Kw (z). Then K(z, w) is holomorphic in 

the first variable and antiholomorphic in the second variable. The function K(z,w) is called the reproducing kernel for  (T()). We 

note that the Hilbert space is completely determined by the function K (z, w). In particular, we have the 

following theorem: 

 

Theorem 2.3.1. Suppose that  n+1. Then for the Hilbert space  (T()) we have: 

 
         

1. The  reproducing kernel of  (T()) is given by K ( z , w) 


( )  ( z  w)

         

    z  e    
2. The functions q m ( z ) : ( z  e ) 

 
 m 

 

, m , form an orthogonal basis of (T())L  , the space of L- 
  

     z  e    
 

invariant functions in  (T()). 

 

Proof. See Theorem 2.9 in [4], and Prop’s XIII. 1.2 and XIII. 1.3 in [8], p. 261, for the proofs. 

 
Remark 2.3.2. We close this discussion with the following remarks: 

 

1. F  (T  ) L if  (l ) F ( z )  F ( z ), l  L, where  is a representation of L. 

 

2.  (T ()) o : {c j Kw j | c j   , w j  T ()}, the space of finite linear combinations, is dense in  (T()). 
 

3. The inner product in  (T())
o
 is given by:  

 
___ 

(
 


j 
c

 j 

K
 w j 

| 
k 

d k K z k ) j,k 
c j d k  K ( z k , wj ). 
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Ez :  ((T ()) 
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2.3.2 The Action of sp(2n,) on  (T ())        

The representation of G(S) on  (S) is given by a multiplier representation as follows:    

                  
            

 ( g ) F ( z )  J ( g 1 
    

            , z ) p F ( g 1. z),    
                    

Where J (g,z) is complex Jacobian of the action of G(S) on S, i.e. J (g,z) = det D (g.z), and p 
2d 

. In our case, J(g,z)= det 
r                    

          A B         
(Cz+D) – (n+1), whenever  g     . The Lie algebra representation is given, by differentiation, as follows: 

         
C D         

 ( X ) F ( z ) d  (exp(tX )) F ( z) |        
 

dt 
        

        t 0        
    

d 
            

              

    J (exp( tX ), z ) p F (exp( tX ). z) |        
           

     dt      t 0        
                  

Proposition 2.3.3. For each piece of the Lie algebra  g  , we have:        

              a a     
  1.  ( X ) F ( z )  tr ( az  a ) F ( z )  D ( a , z ) F ( z ), X    p    

               a   a     
               a  a     
  2.   ( X ) F ( z )  tr (  az  a ) F ( z )  D (  a , z ) F ( z ), X    p    

              
a 

 a     
             a b      
  3.  ( X ) F ( z )   tr (bz ) F ( z )  Dw ( a , b , z ) F ( z ), X         

             b a       
where (a,z)=-az-a-zaz-za and w (a,b,z)= -az-b+zbz+za. 

 

Proof. We prove the Proposition case by case: 

 

Case (1): Let X  p
+
. Then, 

 a   a   
X    . Now, as Xn= 0 for n 2, we have: 

   a  a   

   1  ta  ta 
  exp( tX )   

   ta 1 ta 

As J (g,z)= det (Cz+D)
-(n+1)

, whenever 
 A B 

g    , we also have: 

 
C 

D  
J (exp (-tX), z) = det (taz + 1 + ta) 

–(n+1)
. 

 

 

9 

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:343

ssc
Textbox



Hence, using also the fact that: 

 

det’ (1+tu)= tr (u) 

 

we have: 

 


 

( X ) F ( z ) d J (exp( tX ), z ) 
  

F (exp( tX ). z) | 
       



n1  
       

        

    dt                 t 0        
                             

     d           (1  ta ) z  ( ta)     
  


   

 det(taz  1  ta ) 
  F 


      


    

        

taz  1  ta 

     

     dt              t0    

            1          (1  ta )z  ta  
  

 det(taz  1  ta ) 
     

det'(1  t ( az  a )) F 
  

 |
t 0         

taz  1  ta                           

   
 det(taz  1  ta ) 

   '  (1  ta )z  ta         
       

F 
 


    

 
|
t 0 

    

         

1 ta 
    

                 taz         

  
 det(1) 

 1  
 a ) F ( z )  det(1) 

 '   (1  ta )z  ta ' 
   

tr ( az 
  

F ( z) 
   

 
|
t 0      

taz  1  ta 
  

                           

  tr ( az  a ) F ( z )  F ' ( z )(  az  a  zaz  za)
  tr ( az  a ) F ( z )  D az  a  zaz za F ( z)
  tr ( az  a ) F ( z )  D ( a , z ) F ( z).

 
 

Case (2): Let X  p
-
. Then, 

 a  a    
X    . Again, since Xn=0 for n2, we have: 

 
a 

 a    
   1  ta ta  
  exp( tX )   

  ta 1 ta 

Since J(g, z)= det (Cz + D) 
–(n+1)

, whenever 
 A B 

g    , we have: 

 
C 

D  

J (exp (-tX), z)= det (-taz + 1 + ta) 
–(n+1)

. 

 

Therefore 
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( X ) F ( z ) d J (exp( tX ), z ) 
 

F (exp( tX ). z) | 
 



n1  
 

   

    dt           t 0  
                  

     d          (1  ta )z  ta 
  


    

 det( taz  1  ta ) 
 F 

  

         

     dt         taz  1  ta t0 

   det( taz  1  ta )  1 det'(1  t (  az  a)) 
       (1  ta ) z  ta)         
     

F 
  

 
|
t 0 

      

             

       taz  1  ta         

   
 det( taz  1  ta ) 


F 

' (1  ta )z  ta |
t 0       


  

        

               taz  1  ta  

 det(1)  1 tr (  az  a ) F ( z) 

 det(1) 
 '  (1  ta )z  ta ' 

 

F ( z) 
 

 
|
t 0   

    taz  1  ta  

 tr (  az  a ) F ( z )  F ' ( z )(  az  a  zaz  za) 

 tr (  az  a ) F ( z )  D az  a  zaz za F ( z) 

 tr (  az  a ) F ( z )  D (  a ,  z ) F ( z). 

 

Case (3); Let  X 
 

Then, 
 a b          

 X    , and for exp (-tX) we have:  

       b a          

   t 2    t 2    
 1  ta    ( a 2  b 2 )  ...  tb    ( ab  ba) ... 

     

exp( tX )    2!    2!   
 

t 2      

t 2  

        
tb     ( ab  ba )  ...  1  ta    ( a 2  b2 ) ...

       

 2!      2!  

Similarly, J (g,z)= det (Cz + D)
-(n+1)

, whenever 
 A   B    

g        .Therefore,  

        
C 

  D      

 t 2 

J (exp( tX ), z )  det  tb   

2!  

( ab  ba )  ... 

 z  1  ta  

t
 2 

 2!  
 



 ( n1) 

( a 2  b2 ) ...



 

Hence, 
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d 
                                      

( X )F ( z ) = J (exp(-tX ), z ) 
 

F (exp(-tX ).z ) | 
            

n 1 

0 

        
          

          dt                          t         
                                                

         é  
ææ 

       
2 

       
ö 

             
2 

     

     d ê        t                  t  2  2 ö 
  =       det çç-tb +    (ab + ba ) -...÷ z +1- ta +       (a  + b  ) -...÷ 
                   

    

dt ê 
 ç      

2! 
      

ø 
           

2! 
   ÷ 

     èè                          ø 
         ë                                           

         æ  æ      
t 

2         ö  æ     
t 

2          öù 
         ç  ç1- ta +   (a 2 + b 2 ) -...÷z +ç-tb +    (ab + ba ) -...÷ú 
                  

         ç  è     2!         ø  è    2!          øú 
       F

 ç 
                                      

ú        æ    
t 

2          ö   æ      
t 

2         ö 
         ç  ç-tb +    (ab + ba ) -...÷ z + ç1- ta +     (a 2 + b 2 ) -...÷ú 
                  

         ç     2!                  2!       ú          èè           ø   è          
                                           øû 

                                                    t 0 

          t 2                t 2               1    
 det  tb     ( ab  ba )  ...  z  1  ta   

 ( a 2  b2 ) ...     
        

          2!               2!                  

det'(1  t ( b  t ( ab  ba )  ...  z  a  t ( a 2  b2 ) ...))         

    
t 

2                   
t 

2                      

 (1  ta 
 

( a 2  b 2 )  ...) z  ( tb 
 

( ab  ba) ...) 
          

           
              

F    2!              2!               |      
                                    

  t 2 
                    t 2 

 2    2         t 0      
 ( tb       ( ab  ba )  ...) z  (1  ta     ( a    b  ) ...)         

2! 
             

                     2!                    

 det 

 ( tb  

t
 2  ( ab  ba )  ...) z  1  ta  

t
 2  ( a 2  b2 ) ...


 2!2!




 

   t 2  t 2        
(1  ta    ( a 2  b 2 )  ...) z  ( tb     (ab  ba) ...) 

 
      

F '   2!  2!        | 
  

t 2 
        

    t 2 
  2  2  t 0 

 ( tb     ( ab  ba )  ...) z  (1  ta      ( a   b  ) ...)  
          

 2!   2!      

 

  det(1)  1 tr ( bz  a ) F ( z )  det(1)  F '( z)
  

t 
2   

t 
2        

 

(1  ta 
 

( a 2  b 2 )  ...) z  ( tb 
 

( ab  ba) ...) 
 

      
    

2! 
 

 2!        | 
         

 t 2     t 2  2  2  t 0 
 ( tb     ( ab  ba )  ...) z  (1  ta      ( a   b  ) ...)  

2! 
       

    2!      

 

  tr ( bz  a ) F ( z )  F '( z )(  az  b  zbz  za) 

  tr (bz ) F ( z )  D az  a  zaz za F ( z ), sin ce tr ( a)  0 
 

  tr (bz ) F ( z )  Dw ( a , b , z ) F ( z)
 
 

2.3.3 Highest Weight Representations 

 

In this subsection, we introduce the basic concepts on highest weight representations. The representation  we constructed in 

the previous subsection is a highest weight representation, and that is important for the recursion relations for Laguerre 

functions. 
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Suppose that G is a Hermitian group. That means G is simple and the maximal compact subgroup K has dim (K)=1. 

The Hermitian groups have been classified in terms of their Lie algebras, where the latter are su ( p , q ), sp ( n, ), so * (2 n ), 

so(2, n) and two exceptional Lie algebras. The fact that  (K)=1 implies that G/K is 
 
 
isomorphic 

 
to 

 
a bounded 

 
symmetric 

 
complex 

 
domain. 

 
It 

 
also 

 
implies 

 
that 

 

g 
 
has  

 
a decomposition 

 
of 

 
the 

 
form 

 

g pp,where  

 


 

is the Lie algebra of  

 

K 
 

The subspaces  

 

p+,  
 

and p- 

 

are, respectively, the -2, 0, 2- 

 

eigenspaces of ad(z), for some 

 

z (
 

).  
 

 

Lemma 2.3.4. 

 
 

We have the following inclusions for the spaces p+,  

 

 

and p- : 

 

 
( a ) 

 

(b ) 

 
 

 

 p , p   
 

 , p   p  
 

 

Proof. (a) Suppose that 

 
 

z (

 

 

) 

 

 

and let  

 
 

X  p  , Y  p and 

 
 

Z 

 

 

Then we have  
 

 

ad ( z ) 

 



 

 

X 

 

 
, Y 

 

   ad ( z ) X , Y   X , ad ( z )Y  2 X , Y 

 

 2 X , Y 

 

 0, 
 

 

which implies that 

 



 

 

X 

 

 

, Y 

 



 

 

.  
 

 

(b) Similarly, 

 

 

ad 

 

 
( z ) 

 

Z , X   ad ( z ) Z , 

 

X   Z , ad ( z ) X 

 

2 Z , X , 

 

 

which 

 

 

implies 

 

 

that 

 

Z , X  p

 

 

. 

 

Similar calculations give that 

 

Z , Y  p. 
 

 

Suppose  that is an irreducible representation of G on Hilbert Space . We say  is a highest weight representation if 

there is a nonzero vector   such that 

 

 ( X )  0, X  p.

 

Let  o     |  ( X )  0, X  p  . Then, we have the following important theorem. 

 
 

Theorem 2.3.5. Suppose  is an irreducible unitary highest weight representation of G on H and Ho is defined as above. Then ( 

| K , Ho ) is irreducible. Furthermore, there is a scalar  such that: 

 

 ( Z )   ,   Ho 

 

If  n     |  ( z), then  n 0 n . Furthermore, we have: 
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 ( Z ) :  n   H n , Z  
 

 ( X ) :  n   H n1 , X  p
 (Y ) :  n   n 1 ,  Y  p ,
 
 
where, in the case n=0, H-1 is understood to be the {0} space. 

 

Proof. By Lemma 2.3.4, Ho is an invariant K-space. Suppose Vo is a nonzero invariant subspace of Ho and Wo is its orthogonal 

complement in Ho. Define Vn inductively as follows: 

 

Vn   span  (Y ) | Y  p  ,  Vn1. 
 
 

Let V Vn . Define Wn in the same way as Vn and let W Wn . Then, by Lemma 2.3.4, V and W are invariant g  

subspaces of H. Since  is unitary V and W are orthogonal. However, since  is irreducible and V is nonzero, it follows that V=H and 

hence W=0. This implies Wo=0 and thus /K is irreducible. Since ((Z) commutes with  (K) Schur’s lemma implies that (z)=I on 

Ho for some scalar . Since Vo= Ho, induction, Lemma 2.3.4, and irreducibility of  implies that Vn=Hn. The remaining claims follow 

from Lemma 2.3.4. 

 

Remark 2.3.6. The operators (X), Xp
+
, are called annihilation operators because, for  in the algebraic direct sum  Hn, 

sufficiently many applications of (X) annihilates . The operators  (Y), Yp
-
, are called creation operators. 

 

Remark 2.3.7. For H (T ()), a straightforward calculation gives: 
 
 

     ( X ) q 0   0, X  p . 

Indeed, observe that q0   ( z  e) from Theorem 2.3.1. Then use Prop. 2.3.3 (1) and (*) from the proof of Lemma 2.4.2. 

Finally, we also have that  (T (  )) 
o 

  q, which says that  is an irreducible unitary highest weight representation of G. 
  0  

2.4 Representations of sp (2 n,  ) on L2 ( , d  ) 
     
 

In the previous section we have seen representations of g on  (T ( )). In this section we want to build representations of g 
 

on L2
 ( , d  ). We will actually transfer the previous representations that are on  (T (  )) to L2 ( , d  ) with the help of 

     

the Laplace transform.      

2.4.1 The Laplace Transform      

 
d  ( x ) ( x) 

d    
Consider the space  L2

 ( , d  ) , where 
 

. The Laplace transform is defined by: 
 

r  
     

 

we have the 

 

14 

International Journal of Management, Technology And Engineering

Volume 8, Issue VII, JULY/2018

ISSN NO : 2249-7455

Page No:348

ssc
Textbox



 ( X ) L ( f )( z )  Lv (tr (bx ) f )( z )  L (tr (( ax  xa 

)) f )( z)   L (tr (b ) f )( z )  L (tr (bx) f )( z). 

 

Finally taking L*
 in both sides, and considering (2.4), we get: 

 

 ( X ) f ( x )  tr ( bx  ( ax  xa  b) bx) 
 

 

2.5 Recursion Relations for l m 

 
 
 
Recall the functions defined in Theorem 2.3.1 given by 

 
 

f ( x ), X  .  
 
 
 
 

 

q m ( z )  ( z  e)   m 

 
z
 


 
e

 

. As shown, these 

functions form an  z  e  

orthogonal basis of  (T ( )) 
L

 .Recall also, that  and h denote the Lie algebras of K and H respectively.  


 

Proposition 2.5.1. The Laguerre functions l m relate with q m ( z) as follows: 

 

L (l m )( z )   ( m  n ) q m ( z) 
 
 

Proof Sec [4] p. 187-191, and [8] p. 344. For the classical case, see [3] p. 271-273. 

 

From  Proposition  2.3.3  and  Theorem  2.4.5,  we  can  actually  obtain  the  corresponding  relations  for  q


m  and  l


m 
 

respectively.  Concerning q


m we  know (by Lemma 5.5 in [4], p. 182) that, for   Z ( ) and  Z 0  Z ( h ) (can take 
                      

 0 1       1 0 
Z ( ) and Z ( h ) denote the centers of  and  h  respectively, we have:   and Z0   ), where 


1 

0        0 1          

              ( ) q m ( z )  ( r  2 | m |) q m ( z)  (2.5)    

and                       

      r   m     r    s        
 ( 2 Z 0 ) q m ( z )  

q
 m  e j    n j 

 

( j 1) cm ( j ) q m e j ( z) (2.6) 
   

2 

   

        j 1 

m 

 

e
j  j 1         

where : ej  (0,........0,1, 0......., 0)t , with 1 in the jth position       

and                       

  n   n  s ( j  1  k )          
            

cm ( j)   j  k  2              
  n  n   

s
 ( j  k )          

j k 
           

                    

     j k   
2 
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Theorem 2.5.2. The Laguerre functions satisfy the following differential recursion relations: 

 

1. ( r  2 | m | l m   tr ( x    x)l m 
 

r          

2.  cm ( j )l m e j    tr ( e  x  (2 x   )x)l m   
j 1          

r   m     s     
3.     m j   1   ( j  1) 

  


l 

m e j   
   

 

2 
  

j 1  
m

 


 
e

 j         

tr ( e  x  (2 x   ) x)l     
   m      

Proof. Transferring representation (2.5) above onto  L2
 ( , d  ) 

L
 , we get:  

          

  ( )l

m 

( x )  ( r  2 | m |) l ( x). (2.7) 
      m   

 

Now, combining Proposition 2.4.5 (3) (for f=l


m), X= , i.e. a=0, b=1) and (2.7), we get the first recursion relation for l


m : 

 

( r  2 | m |)lm   tr ( x   x)l m (2.8)  
    

Let L2 ( , d  )  { f  L2 ( , d  ) |  ( ) f  ( r  2 k ) f }. Then as  are highest weight representations, we have: 
k      

 

L ( , d  )  L2 k ( , d  ), 
 
 

where L2
 k ( , d  )  {0} if k  0. Observe also that l m  L2

| m| (, d  ), by (2.7). 

 

 

Now, for X  p
+
, we have: 

 

 ( )  ( X ) f   ( X )  ( ) f   ([ X ,  ]) f 
 

  ( X ) ( r  2 k ) f   ( ad ( ) X ) f

 ( r  2 k )  ( X ) f   (2 X ) f

 ( r  2( k 1))  ( X ) f .

 

That is,  ( X ) f  L2
 k 1 ( , d  ), X  p . Similarly,  ( X ) f  L2

 k 1 ( , d  ), X  p. This says, that  (X), for X 
 

in p
+
 and p

-
 respectively act as k+1 and k-1 projections. Let 

 1 1   1 1
 p (take a=1). Then, X      p  , X    

     1   1   1 1  

   1    1  0      
  

Z 0  
 ( X   X  )  

0 

  ,     

  

2 

     

      1     
and Z 

0 

 Z ( h ), where Z ( h ) denotes the center of h . Transferring representation (2.6) onto L2 ( , d  )L 
we get: 
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 r m   s  r   
 ( 2 Z 0 )l m ( x )   

 

 
m

 j  1    ( j  1) 
 

l 
 

m  e j ( x )  cm ( j )l m ej ( x). (2.9)    

 j 1 
 

m
 


 

e
j   2  j 1   

So, for each one of the projections, (2.9) gives: 

 

   r   m   s  r   
 ( X 

 

)l m ( x )     
m

 j  1    ( j  1) 
 


l  

m  e j ( x )  cm ( j )l m ej ( x).  (2.10)    

   j 1 
 

m
 


 

e
j   2  j 1   

and             

   r          

 ( X  )l m ( x )  cm ( j )l m ej ( x).      (2.11) 
j 1 

 

Finally, combining Proposition 2.4.5 (2), (1) (for f=l


m , X=X
-
 and X=X

+
, a=1) and (2.10), (2.11) respectively, one obtains the 

remaining recursion relations for l


m: 

 

r  m    s     
  

m
 j  1    ( j  1) 

 


l 

m e j  tr (  x  (2 x   )x)l m (2.12)  

j 1  m  ej   2     
          

 
 
 

and 

 
 r                         
                         

 cm ( j )l m e j    tr (  x  (2 x   )x)l m    (2.13)             
 j 1                         

       

 Notice that when one restricts down to , equations (2.8), (2.12) and (2.13) correspond to the classical relations (2.1), 

 (2.2) and (2.3) respectively.                      

 Remark 2.5.3. We conclude with the following remarks:                 

 (a) Note that X 0 , X  , X   g L , where g 
L  { X  g | Ad (l ) X  X , l  L}.           

                         

 (b)  Starting from  the  unit disc D,  one  could  obtain the  polynomials q m ( z) as  follows:  Consider the functions 

 m ( z )  L m (lz ) dl. Then, m ( z )  H ( D), where   H ( D )  { F  ( D ) | || F || 2 },  and 

 || F ||2   D | F ( z ) |2dm( z). ( D) denotes the space of holomorphic functions on the disc D, and    ( )  . 
     

                   d ( d )                      

                       r 

 Note  that 
m 

are  L-invariant, and  furthermore  that  H ( D) 
L

  
m


m 

. That is,  the 
m 

' s span the 1-dimensional 
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eigenspaces of the highest weight representation space. It is known that D  T ( )  through  the  Cayley  transform 
 

c  1   1 1, so we have  (c ) H ( D )  H (T ( )).   
    


  


  

     

1 

      

   2  1         

            z  e    
Hence,   ( c ) m ( z )  ( z  e ) 

 
 m 

 

 H (T ( )). Denote the right-hand side of the above equation by q m ( z).   

            z  e    

Then,  {q

m 

( z)}form an orthogonal basis for H (T ( )) L .   
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