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Abstract

In this Paper, we present some basic definitions and facts regarding Laguerre functions over symmetric cones, and their relation
to representations of Lie groups and Lie algebras. We are particularly interested in Laguerre functions defined over

Q= Sym + ( R, n, ) for which we derive their recursion relations through the action of the Lie algebra of the group Sp (2 n, R

) on certain Hilbert spaces of holomorphic functions over T ( Q) .

Introduction

2.1 Laguerre Functions

The ‘classical’ Laguerre functions are defined through the Laguerre polynomials that can be defined in many ways. One way is
by the Rondriguez formula:

exX-v dm

e~ X XV+ m X G"\B +
Definition 2.1.1. The polynomials defined by L"m (x)= m! dx™, A

m,v €N, are called Laguerre polynomials.

In terms of the hypergeometric function 1 F1 , the Laguerre polynomials L" m ( X) can also be defined as follows:
I’ (x)= LOv#m+D)  F(—myv+1;x),
" r(m+1) * °
where:

» Iy (a)kzk
r(z)=) +e*x?dxwithRe(z)>0,andpFq(av; ys;2) =2, T
ko I18=1(ys)kk!

I'(ay +k
Recallthat (ay)k = uandl“(ml) = nl. Itis clear to see that the set

F( av)

'(m+1)

—_— : 2 + 4 XV
T (v+m+l) LY m ( X)} forms an orthonormal basis for L Q( , e 7 x"dx).

One can define now the Laguerre functions as follows:
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Definition 2.1.2. The functions defined by 1"m (x) =€ " *L"m (2x),X €P *, My eN , are called Laguerre functions.
It is not hard to show now that {1 m ( X)} forms an orthonormal basis for L2R ( . xVdx).

It is also known that |V m satisfy certain recursion relations (see [3] p. 273), like the following:

xd_22I"m(x)+(v+1)il‘”m(x)+(2m+ vil-x)1V(x)= (2.1)

dxdx m
d, d
X IV (X)+@x+v+1) I m(X)+(x+v+DlIVm(x)=-2(m v
Kéx = Y 1) 11 (%) (2.2)
x 92100 60— @x—v=1) 91 n () % (x— v= Dl Y (x) = -2(m +D1 Y me1 (X) (2.3)
dxdx

The Laplace Transform of 1" m ( X) is:

Lv(l "m)(Z).;=I+e—(ZIX)| "m(x)duy(X)
m 1
ZE(_Vi_+_)(Z— Dn(z+1)-
(mev+) I ( m +1)
Denote the polynomials on the right-hand side of the equation above by 4" m (Z). Then, {g" m ( Z)}is an orthogonal basis of the

space of Hy ( H, x"‘ldz), where H=R+IiF .
Formulation of Problem

Observe that RT isa symmetric cone, R is a Euclidean Jordan algebra, and highest weight representations of
SL2 ) on Hy ( H) are derived through the action of SL2 (R) on the tube domain H (the classical upper half-plane). In their
paper, Davidson, Olafsson and Zhang (see [3], also show that one can generate the classical recursion relations (2.1), (2.2) and

(2.3), by transferring the representations mentioned above on the space L2 (RL , XVdX).

One wants to check now whether this can be done for other cones and Euclidean Jordan algebras. That is, given a

symmetric cone €2 cV , where V is a Jordan algebra, and a connected semisimple Lie group G, we want to build highest weight

representations of G on Hy (T ( €2)).Then, we want to transfer the representations on L2 (Q, d uy) to establish recursion

relations for the generalized Laguerre functions, for which we give the basic concepts below. The following cases have been
settled:

(1) Q=.", V=G =SL( ) see[3])

(2) Q=Herm* (n,n),V=Herm(n,n),G=SU(n,n) (see[4])
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In this chapter, we will present the results for the following case:

(3) Q=Sym ™ (In, R), V=Sym(nR),G=Sp(2n, ) ( see also[1]).

Note that case (1) was done for T ( Q) =V + i€ (the classical upper half-plane H ), and gives the classical recursion relations

including (2.1), (2.2) and (2.3) (see [3]). Case (2) was done for T (2 ) = Q + iV (right half-plane) and gives a generalization of

the classical relations (see [4]). Case (3) is treated here also for the right half-plane, and gives a generalization of the classical

relations as well.
2.1.1 L-invariant Polynomials

Let Eii be the diagonal n x n matrix with 1 in the ii-position and zeros elsewhere. Then {Eux, ..., Em} is a Jordan frame for

V =Sym ( nR).Let V& be the +1-eigenspace of the idempotent E11 + ... + Ex acting on V by multiplication. Each v® is a Jordan

subalgebra and we have:

VD cv@ - cvn oy,

If det« is the determinant function for V&) and Px is orthogonal projection of V onto V&) then the function A i (x)=detgPx(x)

is the usual kth principal minor for an n x n symmetric matrix; it is homogenous of degree k. In particular A (x): = An (X)= det
(x). Letm = ( ml,...., mz € (n.Wesaythat m=>0, ifeachm iis a nonnegative integer and Mm>Mme> .. >m >0 Let

A={m|m>0}.
For eachm € C" , we define the generalized power functions as follows:

Am (X)=A1" M (x)A 2™ ™™ (x)...A"™ (X).

The degree of Am is |m| := mi+...+mn. Observe that each generalized power function extends to a holomorphic polynomial on

V. = Sym( n{) in a unique way.
For each m € A, we define an L-invariant polynomial ym 0N J- by:

Wm(Z)ZILAm(|Z)d|, 7 eVe

where L is the group that fixes e in Q and dl is the normalized Haar measure on L. Notice that for the case of H, i.e. n=1, we

have wm(z)=wm(z)=z",asL={1}.
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Lemma2.1.3. IfP(V)- isthe space  of all polynomial functions on V- and P(V )L denotes the space of L-invariant

polynomials, then {i#  } is a basis of P(V)L . Furthermore, if P (V) denotes the space of L-invariant polynomials of
m m>0 = k T L

degree less than or equal k, then {ir  }  isabasisof P (J ) L

m|m <k k

Proof. See [22], p. 61-90.

The lemma above implies that (e+X)isa linear combination of ywn | N |<| M| . Thisallows usto  define the

(m)

generalized binomial coefficients | | from the equation:
(m)

ym(e+X)=201 |ya (0.

|n|s|m\\n )

2.1.2 The Generalized Gamma Function
The generalized Gamma function is defined as follows:

d

Jore 0 80 () A(X) "

[a(m)

where X € Qand m € A. The numbers d and r are, respectively, thedimension and the rank of the Jordan algebra

V =8Sym ( n“,‘%). Convergence conditions for the integral above, and other properties of I'Q (M), are given in the following

proposition.

Proposition 2.1.4. Letm=(m,m,...,m) € T Then the following hold:
12 n

1, .
1. The integral defining I'q (/M) converges if R e ( mj)>§(1 -1), wherej=1, ..., n.

Furthermore,

) 1 A

I'o(m=@z)+ O] m- —(i-1) I,

2 L2 )

Where I' is the classical Gamma function.

2. Take ej=(0,...,0, 1, 0,...,O)t, with 1 in the jth position. Then, VM &) , We have:
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I'a(m) ]
(a]FQ(m—ej):mj_I_lz(J_l)
oyl e(Mee) o iy

T'a(m)

Proof. See Theorem VII.1.1 in [8], p. 123, for (1). Part (2) follows easily from (1).

Let A € We correspond A to the multi-index (A, ..., 2)00000 and denote the latter by X as well. The context of use

should distinguish the two. Then, we define:

2.1.4 The Generalized Laguerre Functions

Let v>0 and meA. Then, the generalized Laguerre polynomials are defined (see [8], p. 343) by:

(m) 1
L” m(xX)=()m 2| ——wn(—X), XeQ
n
miam ) (1)

The generalized Laguerre functions are defined in terms of L" m (X) by:
"m(x)=e )LV L (2X).

Remark 2.1.5. Notice that for Q = R+ , 1.e. n=1, the generalized Laguerre polynomials and functions defined above are

precisely the classical Laguerre polynomials and functions defined on R+ (see [3]).

P
Recall that from Prop. 1.1.11 (b) we know that the measure d p X=A(X) ™~ Zdx, where P —2d , is an H-invariant
r

measure on Q. Define now the following measure:

d ()= A(X)""7 dx.

14

Theorem 2.1.6. Theset {I”  } is an orthogonal basis of L2 (Q,du) L | the Hilbert space  of L-invariant functions in

m  m20 v v

L2 (Q, d u).
Proof. See Theorem 7.8 in [4], p. 191

Finally, observe that by Prop. 1.1.11 (b) it follows that H acts unitarilyon ~ Lzv (€2, d ). by the formula:
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v (h)f(x)=det(h)"f(ht.x).
2.2'Sp (2 nX) and Its Lie Algebra sp (2 n, )

In this section, we use a non-standard model of Sp (2 njR) suitable for the action on the right half-plane. This non-standard
model is a group G (S) isomorphic to Sp (2 N, We describe some important subgroups of G(S). Then, we introduce some

subalgebras of g {the complexification of the Lie algebra of G(S).

The group Sp (2 n, %) is called the symplectic group and is usually defined as:

Sp(2n®) ={geSL@2R )|g'Ig=J},

(0 1)

Where J=| Q | Defined this way, Sp (2 n, ) acts on the upper half-plane by linear transformations.

Y

Consider now the map:

(A —iB) sspp (A B)

sp(@n, )s| [——> \ce(sycsu@ )’
C
\lic D) \~ D)
(1 0)
where P=| | This map is an isomorphism, in other words P *Sp (2n, )P=G(S) R
0
")
Hence, the group G(S) is an isomorphic copy of Sp (2 n,R) in SL (2 n,C ), and it can be defined as follows:
[(AB) (A -iB) |
G(S)=1 | 1€ SL(2n0) || | eSp@n )i
C D )
7 p) Lic J

As in p. 28, we note once again that G (T (Q)) = G (S )7, where dénotes the center of G(S), but we will actually use G(S) the

for the action on the right-half plane T(€2). Consequently, by gefinition of G(S), we have the following relations among A, B,
C,and D:

Alc- C'A=0 ABL-BA'=0
AD-C'B=I ADYBC'=|
B'D-D'B=0 cD-DC'=0
B'C-D'A=-I AD“-BC'=-|
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We will use precisely this copy of Sp (2n, [R), namely G(S), to realize an action of Sp (2n, [R) on the right half-plane.

This action of G(S) on T (€2), where T ()= S= Sym- (n, R )+ iSym (n, R), is given b y linear transformations as follows:

(A B)

.2=(Az+B)(Cz+ D)

D

It is already shown in Example 1.4.3 that the action above is well defined, using the fact that z e T(Q) if and only if

|\CD

Z2+2*>(
2

Some important subgroups of G(S) are the following:

K:Stab(l):[ﬁ(A B cG(S)|A+BeU(n)=U(N)
B A J

(A 0 ) . |

H=G(Q)={l c-1] eG(S)|AEGL(n, ) RGL(n, )
| (A) ) J|

and

L=KAH={ A 0\| €G(S)[Aesu(n)=SU(n),

Y J

where K is the stabilizer of the identity (it is maximal compact), H is the group that fixes Q, and L is the intersection of K and H.

We found H by observing that ix + (ix)*=0, V x €Q, as the following proposition suggests:

2.3 Representations of sp (2n, R ) C on Hy (T(Q))

In this section we want to build representations of G(S) and its Lie Algebra g on Hv(S), the Hilbert space of holomorphic

functions on S. Since here T (€)= S= Sym™ (n,)[# iSym (n,), thatameans d = N(n+1) and r=n.
2

2.3.1 The Hilbert Space Hv (T(Q))

Consider the following Hilbert space of holomorphic functions:
Ho(T(Q)={F|F:T(Q)> CJ||F|l2<o}, veR,

where

IFIR= v fr (o [F (x+iy) B ACX)Y~ (™D dxdy,
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2nv

with A(xX)=det (x) and ary= n(neD) . Recall that in general:
— n+1
(4z) 2 Ta(v—=

d

l--Q(r.n):J‘Qeftr(x)Am(X)rdX
and
Am(X)= Alml-mZ(X)Asz-mS(X). . .Anmn(x).

It is clear that the norm came from the inner product on Hv (T (Q2)), which is defined by :

(F|G)=ava(Q)F(x+iy)G(x+iy)A(x)V‘(”+1)dxdy.

Finally, notice that Hv (T(€2)) is a reproducing kernel Hilbert space (see [4] and [20] for more details). This means that point

E;:H, (T () » Cevaluation given by E: (F)=F(2) is continuous, ¥V z € T ( Q). This
implies the existence of a kernel

function K:eHv (T(Q), such that F (z)= (F|K) for all FeHv (T(QQ)) and zeT(Q2). Set K (z, w)= Kw (z). Then K(z, w) is holomorphic in
the first variable and antiholomorphic in the second variable. The function K(z,w) is called the reproducing kernel for Hv (T(Q2)). We
note that the Hilbert space is completely determined by the function K (z, w). In particular, we have the

following theorem:

Theorem 2.3.1. Suppose that v> n+1. Then for the Hilbert space Hv (T(Q2)) we have:

1. The reproducing kernel of Hy (T(Q2)) isgivenby K (z ,w)=T (v)A(z+w)™"
Q

(z—e\v

v
2. The functions q m(z)=A(z+e) 4 |, m & A, form an orthogonal basis of Hv(T(€2))" , the space of L-

‘Kz+e)

invariant functions in Hv (T(€2)).
Proof. See Theorem 2.9 in [4], and Prop’s XIII. 1.2 and XIII. 1.3 in [8], p. 261, for the proofs.
Remark 2.3.2. We close this discussion with the following remarks:
1. FeH, (TQ) ifn(1)F(z)=F(z), VI € L, where n is a representation of L.

2. Hv(T(Q)°:={ZcjKwj|cie ,w;je T (Q)} the space of finite linear combinations, is dense in Hv (T(C)).

3. The inner product in Hv (T(€2))° is given by:

|zkdkKZk):2j,ijdk K(zk,w_).

(XcK
joiw
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2.3.2 The Action of sp(2n,) R T on H. (T (Q))

The representation of G(S) on Hv (S) is given by a multiplier representation as follows:

Where J (g,z) is complex Jacobian of the action of G(S) on S, i.e. J (9,z) = det D (9.z), and = % In our case, J(g,z)= det

(A B)

(Cz+D) ~ ™Y, whenever g =| | . The Lie algebra representation is given, by differentiation, as follows:
)
L D
7 (X>F(z>=§%ﬂ-(expGX))F(z)|
v

v t=0

=9 3 (exp(-tX), z YVP F (exp(~tX). 2)
dt t-0

Proposition 2.3.3. For each piece of the Lie algebra g ., we have:

(a a)
1. n(X)F(z)=-vtr(az+a)F(z)+D,(a,2)F(z), X=| le p*
\-a-a)
(a -a)
2. 7, (X)F(z)=-vtr(—az+a)F(z)+Dy(—a,-2)F(z), X=| le p
a
\¢ -a)
(a b)
3. m(X)F(z)=vtr(bz)F(z)+Dw(a,b,2)F(z),X=] €0 ¢

where v(a,z)=-az-a-zaz-za and w (a,b,z)= -az-b+zbz+za.

Proof. We prove the Proposition case by case:

N a a)
Case (1): Let X € p". Then, X=| | Now, as X"= 0 for n> 2, we have:
| -a-a)
(1-ta —ta)
exp(—tX) =| |
\ta 1+ ta )
A B
As ] (g,2)= det (Cz+D) ™), whenever 9= ( ) 1 we also have:
C
\~ bp)

3 (exp (tX), 7) = det (taz + 1 + ta) "D,
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Hence, using also the fact that:

det’ (1+tu)=tr (u)
we have:

7 (X)F(2)=9 3 (exp(~tX), 2) i F (exp(—tX). 2) |

v dt
dl Lo ((-ta)z+(-ta))l
= m— | detaz +1+1a) "l Il
dt L \ taz+l+ta Jh-o
o ((1-ta)z-ta)
=—vpdet(taz+1+ta) det'(1 +t(az+a))F| — |k

\ taz+1+ta)
+dettaz+1+ta) " F (WL
\taz +1+ta
L (@-ta)z-ta)
= vdet() i (az+a)F(2)+det) " E (o) d-ta)g-ta

\ taz+1+ta /
=—vtr(az+a)F(z)+F (z)(—az-a-zaz-za)
=-vtr(az+a)F(z)+D-az-—a-zaz-2a F (2)

=—vtr(az+a)F(z)+Du(a,z)F(2).

a
Case (2) Let X e p-. Then, X=| | . Again, since X"=0 for n>2, we have:
a
" —a)
(1-ta ta )
exp(—tX) =| |
k —ta 1+ ta)
A B
Since J(g, z)=det (Cz + D) ’(”+1), whenever -, ( \ |, we have:
C
\~ bp)

J (exp (-tX), 2)= det (-taz + 1 + ta) (™D,

Therefore
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7 (X)F(2)=9 3 (exp(~tX), 2) 1 F (exp( ~tX). 7) |

v dt
o dl - ((1—ta)z+taw
dt | \~taz+ 1 +ta k=

=—ydet(—taz+1+ta) " det(l+t(-az+a))
((1-ta)z+ta))
F| ——— |
\ —taz+1+ta)
v (-t t
+det(—taz+1+ta) F(w\\lt:o
\ —taz+1+ta/

=—vdet(l) " tr(-az+a)F(2)

B ((1-ta)z-ta)

+ det(1) F 9g— o
taz+1+ta )

=—ytr(-az+a)F(z)+F (z)(-az-a+zaz-1a)
=—vtr(—az+a)F(z)+D_a+a+za-aF (2)

_—Vtr(—az+a)F(Z)+DU(7a,7z)F(Z).

(ab)
Case (3), Let X € @ Then, X=| |, and for exp (-tX) we have:
\ba)
( t2 t, )
|[1-ta 4+ —(a‘+b%)-.. —tb +—(ab+ba) —... |
exp( _tX):| 2! 2! |
| t? t? |
| tb+ —(ab+ba)-.. l-ta+ —(a* +b%)—..1
21 2! J
A B
Similarly, J (g,2)=det (Cz + D)'(”+1), whenever g:( DTherefore,
C
\~ p)
(( t2 (ab+ba)-.. z+1—ta+t2 , ) (o)
J(exp(—tX),z)=det| —th + — _(a +b )—|
L )

Hence,
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o X)F (z) :g_tJ (exp(-tX), z )ﬁF (exp(-tX).z) | ]

é -
dé eex t., 0 te 2 o]
= —— detgc-th + — (@b +ba)-.+z+1-ta+ — (@ +b )
dté ée 2! 2 2! o
e
®® 2 O e 2 Ol‘,l
¢cl- ta+t_(a‘+b‘)-...+z +¢-tb +t_(ab+ba)-...+t]
ce 2! g € 2! 10
l_Gae tz 0 E3) ,[2 od
¢cc-tb+l (ab+ba)-.+z+c¢l-ta+l_(a“+b*)-.<0
S A 2! 5 2! U
ee 7] e o0
t=0
(r t2 ) 2 Vo
=—vdet|| -th+ — (ab+ba)—..|z+1 —-ta+ — (a4 +b%)-..|
\ 2! ) 2!
det(1+t((-b+t(ab+ba)-..)z—a+t(a?+b%)-.))
( ) ) )
l@-ta+ L (a2+b2)-.)z+(-tb+Ll (ab+ba)-..) |
Fl 2! 2! N
t? té 2 |tz
| (-th+ — (ab+ba)-.)z+(1-ta+ — (a +b ) - |
\ 2! ol )

+ det (—tb+tz (‘ab+ba)—...)z+1—ta+t2 (az+h2)—.. "

g _

( t? t2 )
[(l-ta + —(a“ +b4)-.)z+(-tb+ —_ (ab +ba) —...) |
F' 2! 2! |
| t? te 2 lt-0
| (~tb+ — (ab+ba)-.)z+(1-ta+ —(a +b )= |
21 21 )

= v det(t) “tr (<bz-a) F(z)+det(1) F'(2)

2 i ; 2
| (1—ta+t_(az+bz)—...)z+(—'[b+t_I (ab+ba)-..) |
I 2! 2! N

t2 t2 2 2 |t=0
| (-tb+ — (ab+ba)-.)z+(l-ta+ —(a +b )= |

\ 21 21

=—vir(-bz-a)F(z)+F'(z)(—az—b+1zbz+za)
:Vtr(bZ)F(Z)+D—az+a+zaz—zaF(Z),Since tr(a):O

=vtr(bz) F(z)+Dw(a,b,z)F(2)

2.3.3 Highest Weight Representations

In this subsection, we introduce the basic concepts on highest weight representations. The representation wv we constructed in
the previous subsection is a highest weight representation, and that is important for the recursion relations for Laguerre

functions.
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Suppose that G is a Hermitian group. That means G is simple and the maximal compact subgroup K has dim Z(K)=1.
The Hermitian groups have been classified in terms of their Lie algebras, where the latter are Su (p, ), sp (n,),so * (2n),
s0(2, n) and two gxceptional Lie algebras. The fact that Z (K)=1 implies that G/K is

isomorphic to abounded symmetric complex domain. It also implies that §. has a decomposition of the form
g.=p+Dp.Dp-,where @ . isthe Liealgebraof K . The subspaces p-, ¢ = and p- are, respectively, the -2, 0, 2-

eigenspaces of ad(z), for some Z € Z(gp )

Lemma 2.3.4. We have the following inclusions for the spaces p+, g2 © and p-:

@ [p.p lce
®) [p p ep

Proof. (a) Suppose that Z € Z(® )andlet X € p+,Y € p-and Z € © . Then we have
ad (2)[x.Y ]1=[ad(z)X,Y]+[X,ad (z)Y]=-2[X,Y J+2[x,Y]=0,
which implies that [ X, Y]ep..

(b) Similarly, ad (2)[Z.X]=[ad(2)Z, X]+[Z,ad(2)X ]=-2[Z,X], which implies that [Z,X Jep- .

Similar calculations give that [Z Y ] € p-.

Suppose = that is an irreducible representation of G on Hilbert Space H. We say = is a highest weight representation if

there is a nonzero vector v € H such that
n(X)v=0,VX e p".
LetHo = { veH|z(X)v=0,VX e p* } Then, we have the following important theorem.

Theorem 2.3.5. Suppose =t is an irreducible unitary highest weight representation of G on H and Ho is defined as above. Then (7z

| K , Ho ) is irreducible. Furthermore, there is a scalar A such that:
n(Z)v=Av,Vv e Ho

IfHp = {U eH| z(2) U}, then H = @ n >0 Hn . Furthermore, we have:
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7Z'(Z):Hn —>Hn, Zego"
n(X):Hn >Hn1,Xept
n(Y):Hn >Hn+, Yep,

where, in the case n=0, H-1 is understood to be the {0} space.

Proof. By Lemma 2.3.4, Ho is an invariant K-space. Suppose Vo is a nonzero invariant subspace of Ho and W is its orthogonal

complement in Ho. Define Vi inductively as follows:
Vh =span {ﬁ(Y)U| Yep ,v eVn_l}.

Let V= @Vn . Define W in the same way as Vn and let W = @Wh . Then, by Lemma 2.3.4, V and W are invariant g -

subspaces of H. Since = is unitary V and W are orthogonal. However, since = is irreducible and V is nonzero, it follows that V=H and
hence W=0. This implies Wo=0 and thus n/K is irreducible. Since (r(Z) commutes with r (K) Schur’s lemma implies that (z)=Al on
Ho for some scalar . Since Vo= Ho, induction, Lemma 2.3.4, and irreducibility of = implies that Va=Hn. The remaining claims follow

from Lemma 2.3.4.

Remark 2.3.6. The operators ©(X), Xep®, are called annihilation operators because, for v in the algebraic direct sum @ Hn,

sufficiently many applications of t(X) annihilates v. The operators t (Y), Y ep’, are called creation operators.

Remark 2.3.7. For Hy (T (€2)), a straightforward calculation gives:
ov(X)q¥o =0, VX e p*.

Indeed, observe that "0 =A (Z+€)™" from Theorem 2.3.1. Then use Prop. 2.3.3 (1) and (*) from the proof of Lemma 2.4.2.

Finally, we also have that H (T (Q2)) = q", which says that rv is an irreducible unitary highest weight representation of G.
v (o] 0

2.4 Representations of sp (2 n,[) _ on L2 (Q,d u)

In the previous section we have seen representations of g on Hy (T (€2)). In this section we want to build representations of g

on L2 (Q, d u). We will actually transfer the previous representations that are on H (T (Q)) to L2 (€, d z) with the help of

the Laplace transform.

2.4.1 The Laplace Transform

¢
Consider the space L% (€, d u), where d z(X)=A(X)" . The Laplace transform is defined by:

14

we have the
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2 (X)) Ly (F)(2) =Ly (tr (bx ) )(2) + Ly (tr ((ax - xa
W) F)(2) = vLy(tr (BV ) F)(2) = Lo (tr (bVXV) )( 2).

Finally taking L*Vin both sides, and considering (2.4), we get:

Av(X)f(x)=tr (vbx+ (ax—xa—-vh)V —bVxV) f(x),Xep.

2.5 Recursion Relations for 1V m

Recall the functions defined in Theorem 2.3.1 givenby "m(Z)=A(z+e)"

ISSN NO : 2249-7455

((z-e
Ym | | As shown, these

functions form an \Z + e)
orthogonal basis of H (T (€2)) & .Recall also, that ¢ and h denote the Lie algebras of K and H respectively.

|4

Proposition 2.5.1. The Laguerre functions 1" m relate with 4" m ( Z) as follows:

L("m)(z)=Ta(m+n)g"m(2)

Proof Sec [4] p. 187-191, and [8] p. 344. For the classical case, see [3] p. 271-273.

From Proposition 2.3.3 and Theorem 2.4.5, we can actually obtain the corresponding relations for q'm and IVm

respectively. Concerning q'm we know (by Lemma55in[4],p. 182) that,for € Z (. ) and Zye Z () (can take

(0 1) (1 0)

| and Zo =
Lo) o

7v(£)q"'m(z)=(rv+2[m)q"m(2)

&=

\

and

, m )y o s ),

m(-2Zo)q m(z)=2]I e, =Xl ven;- (1) kn (i) Aniei (D)
m-e
i\ i) i 2 )

where : gj = (0,........ 0,1,0....... , 0)t , with 1 in the jth position

and

n-n-S5(j+1-k)

: 2
cm (j) = IT——X o
j n -n -7 (i-k)

jkE
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pwnee Z (2 ) and Z (') denote the centers of ¢ and N respectively, we have:

(2.5)

(2.6)
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Theorem 2.5.2. The Laguerre functions satisfy the following differential recursion relations:

L (rve2|m|lm =tr (X= vV -V xV)"n
2. D om (i )W mse, =tr (ve—x+(2x— v)V-VxV)I"n
j=1

- (m Y s,
3. -2 fmy—1+v=(j—1)7 ne ™
M8 2)
tr(ve+x+ (2x+ v)V+VxV)l”

m

Proof. Transferring representation (2.5) above onto L? (€, d ) -, we get:

14

AN (x)=(rv+2|Im 1" (X). (2.7)

m

Now, combining Proposition 2.4.5 (3) (for f=1"m), X= &, i.e. a=0, b=1) and (2.7), we get the first recursion relation for Vi :

(rv+2|ml'm =tr (x—vV -=VxV)I"n (2.8)

LetL? (Q,du)={fle > (Q,du)|A(E)F=(rv+2k)f} Then| as v are highest weight representations, we have:

L(Qdu)=®L%k(Q,du),
where L? k (Q,d uy) # {0} if k> 0. Observe also that |V, € L2| m| (€, d zv), by (2.7).

Now, for X e p*, we have:

A (E) A (X) F=Av (X) A (E) F+ Av ([ X, ED) f
=2 (X) (rv+2k)f+ 2, (ad (&) X)f
=(rv+2K) A (X)f+ A (2X)
=(rv+2(k+1) 20 (X)f.

Thatis, A, (X)f e L%k 41 (Q,d uy), X ep.Similarly, 1, (X)f e L2 k-1(Q,d uy), X € p~. This says, that Av (X), for X

e - [ 11) (11
inp” and p respectively act as k+1 and k-1 projections. Let x| | ept, X = |€ P (take a=1). Then,
\-1-1) L 1-1)
1 (10)
Zo==—(X"+X )= |
2 Lo-1)
andZ € Z (h), where Z () denotes the center of hj. Transferring representation (2.6) onto L2 (Q,du )L we get:
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; c (m Y s, : y
v (=2Z0)m (x)=21 1" =1+ v=(j=1)7 I moes(x)=2em (i) mi ( X). (2.9)
m-e
j=t \ J)k 2) j=t
So, for each one of the projections, (2.9) gives:
- v r (m \( ] S\V r v
A (X Mm(x)=-2_1 I™i=14+v=(j=1)7 Mm-e;(x)-2cem(i)  m+j ( X). (2.10)
m-e
j=1 \ J)k 2) j=1
and
/lv(X+)|Vm(X)=ZCm(J)IVm+ej(X)- (2.11)

Finally, combining Proposition 2.4.5 (2), (1) (for f=I"m, X=X"and X=X", a=1) and (2.10), (2.11) respectively, one obtains the

remaining recursion relations for IVm:

[ mY s, ,
) IMi=1+v=(j=1)" Imej=tr(v=x+2XxX=v)V=-VxV)l n | (2.12)
i1 Am—gj A 2)
and
Yen (MWW mse; =tr (ex+@x+ V)V + VXV "y (2.13)
j=1

Notice that when one restricts downto R, equations (2.8), (2.12) and (2.13) correspond to the classical relations (2.1),

(2.2) and (2.3) respectively.

Remark 2.5.3. We conclude with the following remarks:

() Note that XO,X+,X_egL: ,wheregL.:{Xeg |Ad (1) X=X, VIl e L}.

(b) Starting from the unit disc D, one could obtain  the polynomials §"m(Z) as follows: Consider the functions

!//m(Z)=jLAm(|Z)d|- Then,  ym(z)€Hy(D),  where Hy(D)={F &{D)[[[F[?<o}, and

|| F ||2 ﬂv.[D |F(2) |2dm( Z)O( D) denotes the space of holomorphic functions on the disc D, and Pv = FQ—(V) .
To (v——d)
r
Note that i are L-invariant, and furthermore that H ( D) L@ 'y . Thatis, the ¥ 'Sspan the 1-dimensional
m v men m m
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eigenspaces of the highest weight representation space. It is known that D =T ( Q) through the Cayley transform

c=_1( 1 1) somenave 7(c)H (D) =H (T (),

2\-1 1)
L (z-¢)

v
Hence, 7v (C)ym(Z)=A(z+e) Vol | € Hy (T (£2)). Denote the right-hand side of the above equation by (| m(2).

Z+¢€
Then, {q" (z)}form an orthogonal basis for H (T ( Q)) - .

m
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