A Note on Kevi Ring

Vidhu Gupta

ISSN NO: 2249-7455

PG Department of Mathematics, Khalsa College, Patiala – 147001 Punjab, India.

Abstract

In this paper, we introduce the concept of Kevi Ring. We will also give some properties and characterization of Kevi Ring. Examples are provided to illustrate our results.

Keywords: Prime Ideal, Maximal Ideal, Local Ring, Kevi Ring, Nil Radical

1. Introduction and Preliminaries

Throughout the paper, R is a commutative ring with unity. The concept of Prime ideals which arises in the theory of ring as a generalization of the concept of prime number in the ring of integers, plays a highly important role in that theory and it has been widely studied e.g. in [2] and [3]. The concept of ring having unique maximal ideal called local ring has been studied by M. F. Atiyah, I. G. MacDonal [1] and M. Nagata [4]. Now, we will introduce the concept of ring having unique prime ideal. We will use the notation η for nil radical of the ring.

We will also use the following definitions and results.

Definition 1.1. An ideal $P \neq R$ of ring R is called **prime ideal** if $ab \in P$ implies either $a \in P$ or $b \in P \ \forall a, b \in R$.

Definition 1.2. An ideal $M \neq R$ of ring R is called **maximal ideal** if for any ideal l of R, $M \subseteq I \subseteq R$ implies either I = M or I = R.

Definition 1.3. A ring **R** which has unique maximal ideal is called **local ring**.

Definition 1.4. The set of all nilpotent elements of ring R is called **nil radical** of ring .

Result 1.1. Nil radical of the ring R is the intersection of all prime ideals of R.

Result 1.2. Every maximal ideal is prime ideal.

Result 1.3. Every non – unit element is contained in some maximal ideal.

2. Results

We begin by introducing the following definition.

Definition 2.1. A commutative ring with unity is called Kevi Ring if it has unique prime ideal.

e.g. Z₅, Z₇ etc. are kevi rings.

Theorem 2.1. \mathbb{R} is kevi ring iff every element of \mathbb{R} is either unit or nilpotent.

Proof. Let **R** be a kevi ring.

Let $x \in \mathbb{R}$ an element of \mathbb{R} which is neither unit nor nilpotent.

- ∴ x is a non unit element and every non unit element is contained in some maximal ideal.
- ∴ ∃ maximal ideal M of R s.t. $x \in M$

Also, every maximal ideal is prime ideal.

 $\therefore x \in M$ where M is prime ideal.

But R is kevi ring.

- ∴ it has unique prime ideal.
- $\Rightarrow x \in \eta$ (intersection of all prime ideals of \mathbb{R})
- \Rightarrow x is a nilpotent element.

which is contradiction

 \therefore every element of R is either unit or nilpotent.

Conversely.

Assume that every element of **R** is either unit or nilpotent.

Let P be a prime ideal.

- $\therefore P$ can't contain unit element as if P contain unit element then P = R which is contradiction to the definition of prime ideal.
- ∴ P contains all the nilpotent elements of the ring R as every element of ring is either unit or nilpotent.
- $P = \eta$
- ∴ R has unique prime ideal.
- ∴ R is kevi ring.

Theorem 2.2. \mathbb{R} is kevi ring iff \mathbb{R}/n is field.

Proof. Let **R** be kevi ring.

ISSN NO: 2249-7455

ISSN NO: 2249-7455

∴ every element of **R** is either unit or nilpotent.

Let $\overline{x} \in R/\eta$ be non – zero element.

$$\therefore x + \eta \neq 0 + \eta$$

$$\Rightarrow x \notin \eta$$

∴ x is not a nilpotent element.

 $\Rightarrow x$ is unit.

 $\Rightarrow x + \eta$ is unit element of R/η .

 \therefore every non-zero element of R/η is unit.

 $\Rightarrow R/\eta$ is field.

Conversely.

Let R/η is field.

we have to prove R is kevi ring i.e. it has unique prime ideal.

Suppose R has two distinct prime ideals P_1 and P_2 s.t.

$$P_1 \neq R$$
, $P_2 \neq R$

 $\therefore P_1/\eta$ and P_2/η are prime ideals of P_1/η .

But \mathbb{R}/η is field and every field has only two ideals (0) and itself.

So, **R** has exactly one prime ideal.

∴ R is kevi ring.

Theorem 2.3. Kevi ring has no idempotent other than 0 and 1.

Proof. Let IR be kevi ring with IR as its unique prime ideal.

Let $\boldsymbol{\varepsilon}$ be idempotent element of \boldsymbol{R} .

$$\Rightarrow e^2 = e$$

$$\Rightarrow e(1-e)=0$$

Case - I.

Suppose \bullet is unit or $1 - \bullet$ is unit.

I (i). If a is unit

$$\Rightarrow 1 - e = 0$$

$$\Rightarrow e=1$$

I (ii). If 1 - e is unit

$$\Rightarrow e = 0$$

 \therefore either $\theta = 0$ or $\theta = 1$

Case - II.

Suppose

and 1 −

are non – unit.

Also every non – unit is contained in some maximal ideal and every maximal ideal is prime ideal.

∴ e and 1 - e are contained in some prime ideal.

ISSN NO: 2249-7455

But R has unique prime ideal ideal P.

$$\therefore e, 1-e \in P$$

$$\Rightarrow a + 1 - a \in P$$
 (P is an ideal)

$$\Rightarrow 1 \in P$$

$$\Rightarrow P = R$$

which is contradiction to the definition of prime ideal.

• kevi ring has no idempotent other than 0 and 1.

Theorem 2.4. Every kevi ring is local ring.

Proof. Let **R** be a kevi ring but not local ring.

 $\therefore R$ contains more than one maximal ideal.

But every maximal ideal is prime.

R contains more than one prime ideal.

which is the contradiction to the definition of kevi ring.

- ∴ R is local ring.
- ⇒ Every kevi ring is local ring.

Note 2.1. The converse of the above theorem is not true.

i.e. Local ring may not be kevi ring.

e.g. \mathbb{Z}_4 is local ring but it is not kevi ring.

References

- [1] M. F. Atiyah and I.G. MacDonald, *Introduction to Commutative Algebra*, Addison Wesley, Reading, MA, 1969.
- [2] D.D. Anderson and M. Bataineh, *Generalizations of prime ideals*, Communications in Algebra © 36 (2) (2008), 686-696.
- [3] M. Ebrahimpour and R. Nekooei, *On generalizations of prime ideals*, Communications in Algebra 40 (4) (2012), 1268-1279.
- [4] M. Nagata, Local Rings, Inter science Publishers, New York, 1962.
- [5] David S. Dummit, Richard Foote, Abstract Algebra, Wiley India Pvt. Limited.
- [6] P.B. Bhattacharya, S.K. Jain, S.R. Nagpaul, Basic Abstract Algebra, Cambridge University Press.