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Abstract: ECG signal analysis is more 

important to diagnose different heart related 

diseases effectively with reduced manual 

effort. This paper outlines a brief survey over 

different ECG analysis techniques to perform 

the effective disease detection among the heart 

related diseases. Mainly the complete 

approaches are categorized as Preprocessing 

techniques and feature techniques and 

classification techniques. The main objective 

of preprocessing techniques is to make the 

ECG signal compatible to the detection 

system. Feature extraction techniques aims at 

efficient feature extraction to achieve efficient 

detection accuracy and further the 

classification techniques aims to make the 

system robust. Different datasets are tested 

over the available approaches to test the 

performance and performance evaluation is 

done through Accuracy measurement.   

Keywords: ECG, Cardiovascular Diseases, 
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1. INTRODUCTION 

In general, the diagnosis of heart 
related issues such as the proper or 
malfunctioning are detected through the 
Electrocardiogram (ECG) signal [1-5]. An 
ECG signal characterizes the electrical 
activities of a heart, which are recorded 
through several electrodes attached to the skin. 
This quasi-periodic signal contains valuable 
information on the functioning of a heart and 
can be used for the detection of heart disease. 
The automatic detection of arrhythmia and 
distinguishing them from normal heart 
rhythms could be very useful for an early 
detection of heart disease, especially in real 
time.  

Various approaches are proposed in 
earlier to perform automatic arrhythmia 

detection based on the characteristics of ECG 
signal. Since the automatic detection is a 
computer aided task, provision of most 
significant features of ECG is very important 
by which the accurate diagnosis is possible. 
The earlier approaches focused on various 
aspects like some focused on preprocessing, 
some on feature extraction and some on 
learning techniques. This paper provides a 
complete literature survey about the earlier 
developed approaches.  

Rest of the paper is organized as 
follows; Section II gives the basic details of 
ECG signal. Section III illustrates the details 
of earlier proposed approaches and section IV 
concludes the paper. 

 

II. LITERATURE SURVEY 

Based on the above discussion, the 
automatic detection of Cardiac Arrhythmia 
involves the ECG signal preprocessing, 
Feature Extraction and Classification phases. 
The preprocessing phase involves removing 
the unwanted noises and interferences in the 
ECG signal. The feature extraction phase 
involves the extraction of significant features 
which represents the detailed analysis of ECG 
and further the classification phase involves 
the detection of type of arrhythmia based on 
the features of ECG. Here the literature survey 
is also carried out in the same fashion. I.e., 
initially, the earlier proposed approaches 
focused on the removal of noise are illustrated 
and followed by the approaches focused on 
feature extraction and finally the approaches 
belong to classification. A simple block 
diagram for the automatic detection of 
arrhythmia through ECG signal processing is 
represented in figure.3.  

 
A. Preprocessing 

Since real ECG signals are noisy (i.e. 
white and mains noise) and contaminated with 
artefacts (i.e. electromyography signals due to 
breathing and chest movement) the first step 
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generally consists of band pass filtering the 
measured signals. 

Among all proposals for reducing 
noise in ECG signals, the simplest and most 
widely used is the implementation of recursive 
digital filters of the finite impulse response 
(FIR) [9], [10], which was made 
computationally possible with the advance in 
microcontrollers and microprocessors. Since 
these filters allow quick and easy application 
of reject band filter, they works well for the 
attenuation of known frequency bands like the 
noise added due to the electrical network 
(frequency range is about 50-60 Hz). However 
the main problem is that the frequency of the 
noise is not known always. This problem is 
solved by designing the adaptive filters for 
various frequencies of the signal. However the 
undiscriminating use of filters, i.e., low-pass 
and high pass filters distorts the signal’s 
morphological attributes and makes them as 
unsuitable for the CA diagnosis. The 
architectures of [11-13] applied adaptive filters 
for noise removal form the ECG signal. Least 
Mean Square (LMS) Filter is an adaptive 
which has an ability to remove the unknown 
frequencies. Ravina [14] used the LMS filter 
to de-noise the ECG signal in an adaptive 
fashion. However, this technique has 
constraints and does not offer great advantages 
over the FIR digital filters.  

In the last decade, many methods 
based on wavelet transforms have been 
employed to remove noise, since they preserve 
ECG signal properties avoiding loss of its 
important physiological details and are simple 
from a computational point of view [15-22]. 
Sayadi and Shamsollahi [18] proposed a 
modification of the wavelet transform called 
the multi-adaptive bionic wavelet transform 
and it was applied to reduce noise and baseline 
variation of the ECG signal. This method 
presented superior results when compared to 
the ones based on the traditional wavelet 
transform. Chen et al. [19] use a wavelet 
denoising stage based on a discrete wavelet 
transform, with three levels of decomposition, 
as the first processing stage for real-time QRS 
complex detection. Thus a wavelet denoising 
operation appears to be suitable for on-line 
operation while maintaining the ECG features 
for further processing stages. In [21], 
Savitzky-Golay filter and Discrete Wavelet 
Transform (DWT) are being used to de-noise 

ECG signal and a comparison is provided 
between two methods. 

Some more approaches are also 
proposed including nonlinear Bayesian filters 
[23], extended Kalman filtering [24] to remove 
the noise from the ECG and these approaches 
measured the performance in terms of signal to 
noise ratio. Lannoy et. al., [25] used two 
median filters to remove the baseline wander. 
One median filter of 200-ms width to remove 
QRS complexes and P-waves and other of 600 
ms width to remove T-waves. Then the 
resulting signal is filtered again with 1 12-tap, 
low-pass FIR filter with 3-dB point at 35 Hz. 
A similar method is accomplished in [26-28] 
for the removal noises in ECG. Bazi et. al., 
[29] proposed the use of high pass filter for 
noise artifacts and a notch filter for power 
network noise. Lin and Yang [30] uses a 
second order low pass filter and two median 
filters. In [31], the signal is subtracted by its 
mean and then normalized. Escalona-Moran et 
al. [32] used the raw wave i.e., no 
preprocessing is applied. 

B. Feature Extraction  

Most of the research work focused on 
the extraction of RR interval. The RR interval 
is a time period between two successive R 
peaks. With exception of patients that utilize a 
pacemaker, the variations perceived in the 
width of the RR interval are correlated with 
the variations in the morphology of the curve, 
frequently provoked by arrhythmias [36]. 
Thus, the features in the RR interval have a 
great capacity to discriminate the types of 
heartbeats and some authors have based their 
methods only on using the RR interval features 
[33-35]. 

Not only the RR interval features, 
some approaches focused on the extraction of 
other features also. Among those QRS 
interval, or the duration of the QRS complex is 
the most utilized feature. In [37] the ECG 
signal is denoised to remove the artifacts and 
analyzed using Wavelet Transform to detect 
the QRS complex and arrhythmia. A similar 
process for arrhythmia detection is carried out 
in [38] through the detection of QRS complex. 
ECG data was filtered out first and after 
removing artifacts, QRS complexes were 
identified. For each QRS complex its R-peak, 
slope, sharpness and duration were 
calculated. Along with these approaches, a 
new approach is developed in [39] for intuitive 
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and robust real time QRS detection based on 
the physiological characteristics of the 
electrocardiogram waveform. The proposed 
algorithm finds the QRS complex based on the 
dual criteria of the amplitude and duration of 
QRS complex. It consists of simple operations, 
such as a finite impulse response filter, 
differentiation or thresholding without 
complex and computational operations like a 
wavelet transformation. Along with these 
techniques [40-43] are also focused on the 
extraction of ECG signal feature alone and 
combined.  In [44], a new method based on the 
continuous wavelet transform is described in 
order to detect the QRS, P and T waves. QRS, 
P and T waves may be distinguished from 
noise, baseline drift or irregular heartbeats. 
Firstly, our algorithm is validated using fifty 
12 leads ECG samples from the CinC 
collection. The samples have been chosen in 
the "acceptable records" list given by 
Physionet. The detection and the duration 
delineation of the QRS, P and T waves given 
by [44] are compared to expert physician 
results. 

Aiming at reducing the dimension of 
the feature vector, various techniques have 
been applied directly on the samples that 
represent the heartbeat (in the neighborhood of 
the R peak) as principal component analysis 
(PCA) [46-48], [84, 85] or independent 
component analysis (ICA) [49, 50], [85], or 
the combination of PCA and ICA [51, 52], 
[85] in which new coefficients are extracted to 
represent the heartbeat. Dhani [52] presents a 
comparative study between the use of PCA 
and ICA to reduce the noise and artifacts of 
the ECG signal and showed that PCA is a 
better technique to reduce noise, while ICA is 
better one to extract features. The ICA 
technique enables statistically separate 
individual sources from a mixing signal. The 
ECG is a mix of several action potentials and 
each action potential could be strongly related 
to an arrhythmia class. The rationale behind 
ICA for ECG heartbeat classification is to 
separate the action potentials sources as well 
as the noise sources. The PCA technique 
separates the sources according to the energy 
contribution to the signal.  

Another technique based on PCA, the 
Kernel Principal Component Analysis 
(KPCA), was used by Devy et al. [53]. In that 
work, a comparison between PCA and KPCA 
was performed and it was concluded that 

KPCA is superior to the PCA technique for 
classifying heartbeats from the ECG signal. 
According to Kallas et al. [54], KPCA 
performs better, due to its nonlinear structure. 
Asl et al. [55] used Generalized Discriminant 
Analysis (GDA) to reduce the dimensions of 
the features of the heartbeat interval type to 
classify rhythmic arrhythmias. However, the 
authors did not take care to separate the 
heartbeats of the same patient used during 
training and testing (intra-patient paradigm), 
which is a serious concern discussed further. 
The inter-patient paradigm should be 
considered for a more realistic scenario. 

Although various techniques have 
been considered, most of the studies presented 
in literature use wavelet transform and 
researchers claim that this is the best method 
for extracting features from the ECG signal 
[57, 58]. Sani et.al., [59] has proposed a robust 
ECG feature extraction technique suitable for 
mobile devices by extracting only 200 samples 
between R-R intervals as equivalent R-T 
interval using Pan Tompkins algorithm at 
preprocessing stage. The discrete wavelet 
transform (DWT) of R-T interval samples are 
calculated and the statistical parameters of 
wavelet coefficients such as mean, median, 
standard deviation, maximum, minimum, 
energy and entropy are used as a time-
frequency domain feature. Amrutha devi [60] 
focused on the suggested Discrete Wavelet 
Transform (DWT) in processing ECG 
recordings and also to extract certain 
attributes. The process of feature extraction 
and dimensionality reduction can be 
effectively performed using Principal 
Component Analysis (PCA). Besides DWT, 
continuous wavelet transform (CWT) has also 
been used to extract features from the ECG 
signals [61], since it overcomes some of the 
DWT drawbacks, such as the coarse-ness of 
the representation and instability. [62] Presents 
a classification method using Support Vector 
Machine (SVM) algorithm.  

C. Classification  

Once the set of features has been 
defined from the heartbeats, models can be 
built from these data using artificial 
intelligence algorithms from machine learning 
and data mining domains [64-66] for 
arrhythmia heartbeat classification. The four 
most popular algorithms employed for this 
task and found in the literature are: support 
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vector machines (SVM) [54] [62], artificial 
neural networks (ANN) [67], [71], [75], [78] 
and linear discriminant (LD) [63], and 
Reservoir Computing with Logistic 
Regression (RC) [68]. Since the most of the 
research work is carried out through the ANN 
and SVM techniques the following section 
illustrates the proposed approaches based on 
those three techniques. 

The ANN architectures mostly used 
for arrhythmia classification are Multilayer 
Perceptrons (MLP) and Probabilistic Neural 
Networks (PNN). According to Yu and Chen 
[69], models constructed with PNN are 
computationally more robust and efficient than 
the traditional MLP. A feed forward multilayer 
neural network (NN) with error back-
propagation (BP) [70]  learning algorithm was 
used as an automated ECG classifier to 
investigate the possibility of recognizing 
ischemic heart disease from normal ECG 
signals. The proposed ECG classification in 
[72] is supervised by ANN. The ECG 
waveform gives the almost all information 
about activity of the heart, which is depending 
on the electrical activity of the heart. In [72] 
only five features of ECG signal P, Q, R, S, T 
are focused. This is achieved by extracting the 
various features and duration of ECG 
waveform P-wave, PR segment, PR interval, 
QRS Complex, ST segment, T-wave, ST- 
interval, QTC and QRS voltage.  Mitra et.al., 
[73] attempts correlation-based feature 
selection (CFS) with linear forward selection 
search. For classification, [73] used 
incremental back propagation neural network 
(IBPLN), and Levenberg-Marquardt (LM) 
[76] classification tested on UCI data base. 
Some more approaches are proposed by 
combining ANN with other algorithms. 
According to Osowski et. al., [74], a 
combination of classifiers not only reduces the 
overall error in the neural networks, but also 
reduces the incidence of false negatives. 

SVM is found to be a most popular 
and efficient classifier for the classification of 
ECG signals to detect cardiac arrhythmias. A 
novel life-threatening arrhythmias detection 
algorithm is presented in [77] by combining 
the SVM with previously proposed ECG 
parameters A total of 13 parameters were 
computed accounting for temporal 
(morphological), spectral, and complexity 
features of the ECG signal. Nitin aji bhaskar 
[78] focused to classify an ECG signal as 

healthy subject or subject diagnosed with 
Myocardial Infarction (MI) using Artificial 
Neural Networks (ANN) and SVM (Support 
Vector Machine). LIBSVM is utilized for the 
classification with SVM and back propagation 
artificial neural networks with varying hidden 
layers and nodes are also implemented for 
performance analysis. Qin et.al., [79] 
combined the DWT with SVM to perform 
arrhythmia beat classification.  

III. CONCLUSION 

This paper focused on the earlier 
approaches developed with the aim of accurate 
diagnosis of various CAs through ECG signal. 
Since the ECG signal carries the most 
significant information of the status of heart, 
i.e., proper or malfunctioning, analysis of the 
entire characteristics of ECG signal gives 
better results. For this purpose the entire 
system is divided into three phases such as 
preprocessing, feature extraction and 
classification. Initially the approaches which 
are focused towards the preprocessing of ECG 
signal are discussed. All these approaches 
aimed to remove the unwanted noise added in 
the ECG signal.  Further the approaches 
mainly focused on the feature extraction are 
discussed. Finally the approaches mainly 
focused in the optimization of classification 
are discussed. These methods include the 
machine learning algorithms, clustering 
algorithms and data mining approaches etc.   
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