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Abstract 
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1. INTRODUCTION 

  There has been a growing interest in the theory of impulsive differential equations in recent years 

since they provide a natural framework for mathematical modelling of many real world phenomena. 

Impulsive differential equations have attracted many researchers attention due to their wide 

application in many fields such as control technology, drug administration and threshold theory in 

biology and the like. Such systems arise naturally from a variety of applications such as orbital 

transfer of satellites, impact and constrained mechanics, sampled data systems, inspection processes in 

operations research and ecosystem management. There are several research works which appeared in 

the literature on the stability of impulsive differential equations. 

In, recent years stability of impulsive delay differential equations has been extensively studied. See 

[1-4,6-11] and the references therein. Recently there have been some research work in this direction in 

[11-15], the author investigated the uniform asymptotic stability and global exponential stability of 

impulsive delay differential equation. In [10], the author obtained some results on exponential 

stabilization of impulsive delay differential equations. The method of Lyapunov functions and 

Razumikhin technique have been widely applied to stability analysis of various impulsive delay 

differential equations and they have also proved to be powerful tool in the investigation of impulsive 

delay differential equations [6,8,10]. The aim of this work is to establish global exponential stability 

criteria for impulsive delay systems by employing the Razumikhin technique which illustrate that 

impulses do contribute to the stabilization of some delay differential systems. Our results show that 

impulses may be used as a control to stabilize the underlying continuous system. 
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2.PRELIMINARIES 

Let R denote the set of real numbers, ��  the set of nonnegative real numbers and ��   the n-

dimensional real space equipped with the Euclidean norm ‖∙‖ . Let �  denote the set of positive 

integers, i.e.,� = {1,2, … }. Given a constant � > 0, we equip the linear space ��([−�, 0], ��) with 

the norm ‖∙‖τ defined by ‖�‖τ= sup�τ���� ‖ψ(s)‖. 

Consider the following impulsive delay system: 

�

�,(�) = �(�, ��),               � ≠ ��
∆�(��) = �� ���,���

��,       � ∈ �,

��� = �,                                        

�                                                                                                           (2.1) 

 

Where �, �� : �� × ��([−�, 0], ��) → ��   ;� ∈  ��([−�, 0], ��);0 ≤ �� < �� < �� <  … < �� <  …, 
with �� → ∞  as � → ∞;∆�(�) = �(�) − �(��); and ��, ��� ∈  ��([−�, 0], ��) are defined by    
��(�) = �(� + �), ���(�) = �(�� + �)  for −τ ≤ s ≤ 0,  respectively.We shall assume that       
�(�, 0) = �� (�, 0) = 0 for all � ∈  �� and � ∈ � so that system (2.1)  have the trivial solution. Given 
a constant � > 0, we equip the linear space ��([−�, 0], ��) with the norm ‖∙‖τ = sup�τ���� ‖ψ(s)‖. 
Denote �� = �(�, ��, �) the solution of (2.1) such that ��� = �. We further assume that all the solution 

�(�) of (2.1) are continuous except at ��, � ∈ �, at which �(�) is right  continuous, i.e., ���
�  = �(��), 

� ∈ �. 
 
Definition 2.1:  
Function � ∶ �� ×  �� →   �� is said to belong to the class v� if 
(i) V is continuous in each of the sets [����, ��) ×  �� and for each � ∈ ��, � ∈  [����, ��), 
And � ∈ �, ���(�,�)→ ���

�,���(�, �) = �(��
�, �) exists; and 

 
(ii) �(�, �) is locally Lipschitzian in all � ∈  ��, and for all � ≥ ��, �(�, 0) ≡ 0. 
 
Definition 2.2. Given a function � ∶ �+ ×  �� →   ��, the upper right-hand derivative of � with 
respect to system (2.1) is defined by 
 

�����, �(0)� = lim
�→ ��

���
1

ℎ
���� + ℎ, �(0) + ℎ �(�, �)� − ���, �(0)�� 

for (�, �) � �+ × ��([−�, 0], ��). 

Definition 2.3. The trivial solution of (2.1) is said to be globally exponentially stable if there exist 

some constants � > 0 and � ≥ 1 such that for any initial data ��� = � 

      ‖�(�, ��, �) ‖ ≤  � ‖�‖� e��(����),   � ≥ ��, 

where  (��, �) � �+ × ��([−�, 0], ��). 
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3.The Lyapunov-Razumikhin Method 

 
In this section, we shall present some Razumikhin-type theorems on global exponential 

stability for system (2.1) based on the Lyapunov–Razumikhin method. Our results show that 

impulses play an important role in stabilizing delay differential systems. 

Theorem 3.1. Assume that there exist a function � ∈  ��  and several positive constants p, c, c� , 

c�, λ > 0, � ≥ 1, � > 1 and � − λ ≥ c such that 

(i) c�‖�‖
�  ≤  �(�, �) ≤  c�‖�‖

�, for any � � �+  ��� � ∈  ��; 

(ii) �����, �(0)� ≤ ����, �(0)�, for all � ∈ [����, ��), � ∈ �, whenever ����, �(0)� ≥

�(� + �, �(�) for �∈ [−�, 0], where � ≥ ���� is a constant; 

(iii) �(��, �(0) + ��(��, �)) ≤ �� ����
�, �(0)�,  where 0 < ���� ≤ 1, ∀ � ∈ � are 

constants; 

(iv) � ≥ 1/���� and  �� ���� < −��(�� − ����), � ∈ � . 

Then the zero solution of the impulsive retarded differential equation (2.1) is globally exponentially 

stable with convergence rate  
�

�
  for any time delays � ∈ (0,∞). 

Proof: Let �(�) = �(�, ��, �) be any solution of the impulsive system (2.1) with the initial condition 

��� = �, and �(�) = �(�, �). 

 

We shall show that 

�(�) ≤ � ‖�‖�
�
���(����),     � ∈ [����, ��), � ∈ �.                                                                            (3.1) 

Let � ≥ ����∈� �
�

����
�. From condition (iv), we can choose a positive constant � > 0 such that 

0 <  ���
��(�����) ≤ � ≤  �� �������(�����)���(�����)                                                                      (3.2) 

It then follows that 

0 < c�‖�‖�
�
<  c�‖�‖�

�
��(�����) ≤ � ‖�‖�

�
���(�����)                                                                      (3.3) 

We first prove that 

�(�) ≤  � ‖�‖�
�
���(����),       � ∈ [��, ��).                                                                                             (3.4)  

To do this, we only need to prove that 

�(�) ≤  � ‖�‖�
�
���(�����),       � ∈ [��, ��).                                                                                           (3.5) 

If (3.5) is not true, then by (3.3) there exists � ∈ (��, ��) such that 

���� >  � ‖�‖�
�
���(�����) ≥ c�‖�‖�

�
��(�����) > c�‖�‖�

�
≥ �(�� + �),     � ∈ [−�, 0],           

Which implies that there exists t∗ ∈ (��, �) such that  

�(t∗) =  � ‖�‖�
�
���(�����)  and �(�) ≤ �(t∗),   t∈ [�� − �, t∗],                                                      (3.6) 

and there exists t∗∗ ∈ [t�, t
∗) such that 

�(t∗∗) = c�‖�‖�
�

   and    �(t∗∗) ≤ �(�) ≤ �(t∗),   � ∈ [t∗∗, t∗].                                                        (3.7) 

Hence, for any � ∈ [−�, 0], by (3.2) and (3.7), we get 

�(� + �) ≤ � ‖�‖�
�
���(�����) ≤ �� �������(�����)���(�����)‖�‖�

�
���(�����) ≤  ����c�‖�‖�

�
 

                 = ���� �(t∗∗) ≤ ��(t∗∗) ≤ ��(�),      � ∈ [t∗∗, t∗]                                                            (3.8) 

and thus by (3.8) and condition (ii), for � ∈ [t∗∗, t∗], we get ����(�)� ≤ ��(�) ≤ �� �(�). It follows 

from (3.2),(3.6) and (3.7) that 

�(t∗) ≤ �(t∗∗)e��(�
∗��∗∗) < c�‖�‖�

�
���(�����) < c�‖�‖�

�
��(�����)  

           ≤ � ‖�‖�
�
���(�����) = �(t∗) 
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Which is a contradiction. Hence (3.4) holds and then (3.1) is true for � = 1. 

Now we assume that (3.1) holds for � = 1,2,… , � (� ∈ �, � ≥ 1), i.e., 

 �(�) ≤  � ‖�‖�
�
���(����),       � ∈ [����, ��), � = 1,2,… , � .                                                             (3.9) 

Next, we shall show that (3.1) holds for � = � + 1, i.e. 

 �(�) ≤  � ‖�‖�
�
���(����),       � ∈ [��, ����)                                                                                    (3.10) 

Suppose (3.10) is not true. Then we define � = inf {� ∈  [��, ����)��(�) > � ‖�‖�
�
���(����)�.    

From conditions (iii), (iv) and (3.9), we get 

�(��) ≤ ��� ‖�‖�
�
���(�� ���) = ��� ‖�‖�

�
������� ���������� < ���

�(�� ����� )� ‖�‖�
�
���������          

            <  ����(�� ����� )��(�� ����� ) � ‖�‖�
�
��������� 

            <  � ‖�‖�
�
���������                                                                                                                   (3.11) 

and hence   � ≠ ��. From the continuity of �(�) on the interval [��, ����), we have 

���� = � ‖�‖�
�
���������,          and         �(�) ≤ ����,       � ∈ [��, �].                                           (3.12) 

From (3.11), we know that there exists t∗ ∈ (��, �) such that 

�(t∗) = ���
�(�� ����� )� ‖�‖�

�
���������,     and         �(t∗) ≤  �(�) ≤ ����,   � ∈ [t∗, �].         (3.13) 

On the other hand, for � ∈  [t∗, �]  and  �∈ [−�, 0], either � + �∈ [�� − �,  ��)   or � + � ∈  [��, �].          

If � + � ∈ [�� − �, ��)  from (3.9), we obtain  

�(� + �) ≤ � ‖�‖�
�
���(������) = � ‖�‖�

�
���(����)����  

                 ≤ � ‖�‖�
�
���������������� ��� 

                 ≤ �����(�� ����� ) � ‖�‖�
�
���������                                                                                   (3.14) 

while,  if  � + � ∈ [��, �], from (3.12), then 

�(� + �) ≤ � ‖�‖�
�
��������� ≤  �����(�� ����� ) � ‖�‖�

�
���������                                               (3.15) 

In any case however, (3.13)-(3.15) imply that, for any � ∈ [−�, 0], we have 

�(� + �) ≤ �����(�� ����� ) � ‖�‖�
�
��������� ≤ �����(�) ≤  ��(�),       � ∈ [t∗, �].                 (3.16) 

Finally, by (3.16) and condition (ii), we have  ����(�)� ≤ �� �(�). Thus, in view of condition (iv), 

we have 

���� ≤ �(t∗)�������
∗� = ���

�(�� ����� )� ‖�‖�
�
����������������

∗�  

         <  ����(�� � ���� )��(�� ����� )� ‖�‖�
�
����������������

∗� 

         <  � ‖�‖�
�
������������������ 

         <  � ‖�‖�
�
��������� =  ���� 

Which is a contradiction. This implies the assumption is not true, and hence (3.10) holds. Therefore, 

by some mathematical induction, we obtain (3.1) holds for any � ∈ �. Then from condition (i), we 

have 

‖�‖ ≤ � ∗‖�‖��
�
�

�
(����),       � ∈  [����, ��), � ∈ �  

where � ∗ ≥ ��� �1, [
�

��
]
�

��, which implies that the zero solution of the impulsive system (2.1) is 

globally exponentially stable with convergence rate 
�

�
  . The proof is completed. 

Theorem 3.2. Assume that there exist a function � ∈  ��  and several positive constants p, c, c� , 

c�, σ, λ > 0, � ≥ 1, and � − λ ≥ c such that 

(i) c�‖�‖
�  ≤  �(�, �) ≤  c�‖�‖

�, for any � � �+  ��� � ∈  ��; 

(ii) �����, �(0)� ≤ ����, �(0)�, for all � ∈ [����, ��), � ∈ �, whenever ����, �(0)� ≥

�(� + �, �(�) for �∈ [−�, 0], where � ≥ ���� is a constant; 
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(iii) �(��, �(0) + ��(��, �)) ≤ �� ����
�, �(0)�,  where 0 < ���� ≤ 1, ∀ � ∈ � are 

constants; 

(iv) � ≥ 1/���� and In �� ���� < −(� + � + �)(�� − ����), � ∈ � . 

Then the zero solution of the impulsive retarded differential equation (2.1) is globally exponentially 

stable with convergence rate  
�

�
  for any time delays � ∈ (0,∞). 

Proof: Let �(�) = �(�, ��, �) be any solution of the impulsive system (2.1) with the initial condition 

��� = �, and �(�) = �(�, �). 

We shall show that 

�(�) ≤ � ‖�‖�
�
��(���)(����),  � ∈ [����, ��), � ∈ �.                                                                       (3.17) 

Let � ≥ ����∈� �
�

����
�. From condition (iv), we can choose a positive constant � > 0 such that 

0 <  ���
(�����)(�����) ≤ � ≤  ����

(���)��(�����)(�����)�(�����)(�����)                                     (3.18)                                    

It then follows that 

0 < c�‖�‖�
�
<  c�‖�‖�

�
��(�����) ≤ � ‖�‖�

�
��(���)(�����)                                                             (3.19)                                                                         

We first prove that 

�(�) ≤ � ‖�‖�
�
��(���)(����),� ∈ [��, ��).                                                                                           (3.20)  

To do this, we only need to prove that 

�(�) ≤ � ‖�‖�
�
��(���)(�����),� ∈ [��, ��).                                                                                          (3.21) 

If (6) is not true, then by (3.19) there exists � ∈ (��, ��) such that 

���� >  � ‖�‖�
�
��(���)(�����) ≥ c�‖�‖�

�
��(�����) > c�‖�‖�

�
≥ �(�� + �),     �∈ [−�, 0],           

Which, implies that there exists t∗ ∈ (��, �) such that  

�(t∗) =  � ‖�‖�
�
��(���)(�����) and �(�) ≤ �(t∗),   t∈ [�� − �, t∗],                                              (3.22)        

and there exists t∗∗ ∈ [t�, t
∗) such that 

�(t∗∗) = c�‖�‖�
�

   and    �(t∗∗) ≤ �(�) ≤ �(t∗),   � ∈ [t∗∗, t∗].                                                      (3.23) 

Hence, for any � ∈ [−�, 0], by (3.18) and (3.23), we get 

�(� + �) ≤ � ‖�‖�
�
��(���)(�����) ≤ �� ��(���)��(�����)(�����)�(�����)(�����)‖�‖�

�
��(���)(�����) 

                 ≤  ��(���)�c�‖�‖�
�
= ��(���)� �(t∗∗) ≤ ��(t∗∗) ≤ ��(�), � ∈ [t∗∗, t∗]                      (3.24)                                   

and thus by (3.24) and condition(ii), for � ∈ [t∗∗, t∗], we get ����(�)� ≤ ��(�) ≤ (� − � − �) �(�). It 

follows from (3.18),(3.22) and (3.23) that 

�(t∗) ≤ �(t∗∗)e(�����)(�
∗��∗∗) < c�‖�‖�

�
�(�����)(�����) < c�‖�‖�

�
��(�����)  

           = c�‖�‖�
�
�(�����)(�����)�(����)(�����) 

           ≤ � ‖�‖�
�
�(����)(�����) = �(t∗) 

Which, is a contradiction. Hence (3.20) holds and then (3.17) is true for � = 1. 

Now we assume that (3.17) holds for � = 1,2,… , � (� ∈ �, � ≥ 1), i.e., 

 �(�) ≤ � ‖�‖�
�
�(����)(����),� ∈ [����, ��), � = 1,2, … , � .                                                         (3.25) 

Next, we shall show that (3.17) holds for � = � + 1, i.e. 

 �(�) ≤ � ‖�‖�
�
�(����)(����),� ∈ [��, ����)                                                                                   (3.26) 

Suppose (3.26) is not true. Then we define � = inf {� ∈  [��, ����)��(�) > � ‖�‖�
�
�(����)(����)�. 

From conditions (iii), (iv) and (3.25), we get 

�(��) ≤ ��� ‖�‖�
�
�(����)(�� ���) 

            = ��� ‖�‖�
�
�(���)����� ���(���)������ 

            < ���
(���)(�� ����� )� ‖�‖�

�
��(���)������          

            <  ��(�����)(�� ����� )�(���)(�� ����� ) � ‖�‖�
�
��(���)������ 
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            <  � ‖�‖�
�
��(���)������                                                                                                            (3.27) 

and hence   � ≠ ��. From the continuity of �(�) on the interval [��, ����), we have 

���� = � ‖�‖�
�
��(���)������,          and         �(�) ≤ ����,       � ∈ [��, �].                                    (3.28) 

From (3.27), we know that there exists t∗ ∈ (��, �) such that 

�(t∗) = ���
(���)(�� ����� )� ‖�‖�

�
��(���)������,    and  �(t∗) ≤  �(�) ≤ ����,   � ∈ [t∗, �].    (3.29) 

On the other hand, for � ∈ [t∗, �] and  � ∈ [−�, 0], either � + � ∈ [�� − �, ��)  or � + � ∈ [��, �].   

If � + � ∈ [�� − �, ��)  from (3.25), we obtain  

�(� + �) ≤ � ‖�‖�
�
��(���)(����)��(���)� 

                 ≤ � ‖�‖�
�
��(���)(��̅��)�(���)(��̅�) �(���)� 

                 ≤ �(���)��(���)(�� ����� )� ‖�‖�
�
��(���)������                                                                 (3.30) 

While,  if  � + � ∈ [��, �], from (3.28), then 

�(� + �) ≤ � ‖�‖�
�
��(���)������ ≤ �(���)���(�� ����� ) � ‖�‖�

�
��(���)������                             (3.31)                                        

In any case however, (3.29)-(3.31) imply that, for any � ∈ [−�, 0], we have 

�(� + �) ≤ �(���)��(���)(�� ����� ) � ‖�‖�
�
��(���)������ ≤ ��(���)��(�∗) 

                 ≤ ��(���)��(�) ≤  ��(�), � ∈ [t∗, �]                                                                                   (3.32) 

Finally, by (3.32) and condition (ii), we have  ����(�)� ≤ (� − � − �) �(�).  Thus, in view of 

condition (iv), we have 

���� ≤ �(t∗)�(�����)����
∗� 

         = ���
(���)(�� ����� )� ‖�‖�

�
��(���)�������(�����)����

∗�  

         <  ��(�����)(�� ����� )�(���)(�� ����� )� ‖�‖�
�
��(���)�������(�����)����

∗� 

         <  ��(�����)(�� ����� )�(���)(�� ����� )� ‖�‖�
�
��(���)�������(�����)����

∗� 

         <  � ‖�‖�
�
������������������ 

         <  � ‖�‖�
�
��������� =  ���� 

Which is a contradiction. This implies the assumption is not true, and hence (3.26) holds. Therefore, 

by some mathematical induction, we obtain (3.17) holds for any � ∈ �. Then from condition (i), we 

have 

‖�‖ ≤ � ∗‖�‖��
�
�

�
(����),       � ∈  [����, ��), � ∈ �  

where � ∗ ≥ ��� �1, [
�

��
]
�

��, which implies that the zero solution of the impulsive system (2.1) is 

globally exponentially stable with convergence rate 
�

�
  . The proof is completed.  

We can see from Theorem 3.1 and 3.2, impulses have played an important role in exponentially 

stabilizing a delay differential system. 

Next, we apply te previous theorems to the following linear impulsive delay differential system: 

�

�(̇�) = ��(�) + ���� − �(�)�, � ≠ ��, � ≥ ��
∆�(�) = ���(�

�), � = ��, � ∈ �
��� = �,

�                                                                              (3.33) 

Corollary 3.1 Suppose there exists some constants �, � > 0, and � ≥ 1 such that 

(i) for some constant � ≥ ����, ����(�
� + � + �) + �‖�‖� ≤ � − � 

(ii) � ≥
�

‖������‖
  and ��‖� + ����‖ < −(� + �)(�� − ����), where C� = E, � ∈ �. 

Then system (3.33) is globally exponentially stable and its convergence rate is �/2. 
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Proof.  It follows from above theorem  by selecting Lyapunov function �(�) = ‖�‖�. 

Example 3.1 Consider the following linear impulsive retarded dynamical system. 

�

�(̇�) = ��(�) + �� �� −
�

�
(1 + ���)� ,     � ≠ ��, � ≥ �� 

∆�(�) = ���(�
�),      � = ��, � ∈ �

��� = �,

�                                                          (3.34) 

  where  

� = �
0.1 0.2 −0.1
0.2 0.15 0.3
0 0.24 0.1

�    ,               � = �
−0.12 0.02 0
0.12 −0.2 0.05
0 0.14 −0.1

�            

and 

�� = �
−0.5 0 0
0 −0.8 0
0 0 −0.4

� 

It is easy to check that for the time delay � = 0.8, the corresponding system without impulses is 

unstable. The numerical simulation of this retarded dynamical system with respect to initial functions; 

��(�) = �
0,   � �[−0.8,0)
2.8,    � = 0;

�            ��(�) = �
0,   � �[−0.8,0)
−1.4 ,    � = 0;

�           ��(�) = �
0,   � �[−0.8,0)
2.1,    � = 0;

� 

is  given in Fig. 1. 

    It is easy to see that ����(�
� + � + �) = 1.8819, ‖�‖� = ����(��

�) = 0.0844  and 

‖� + ��‖ = 0.6.  By taking � = 25 , � = 5 , � = 2, � = 6.2 and t��� − t� = 0.06,  it is easy to 

verify that all the conditions of  Corollary 3.1 hold: 

(i) � = 25 ≥ ���� = 24 .7652 , ����(�
� + � + �) + �‖�‖� = 3 .9919 ≤ � − � = 4 .2; 

(ii) �� ‖� + ��‖ = −0.5108 < −(� + �)(t��� − t�) = −0.4920; 

 

Which, means the impulsive retarded dynamical system (3.34) is globally exponentially stable with 

convergence rate 1. This conclusion cannot be delivered by applying the corresponding exponential 

stability results for impulsive retarded differential equations given in the literature [1,2], since the 

length of the impulsive integrals is excessively less than the time delays, i.e.,�� − ���� = 0.06 < � =

0.8. Fig. 2 illustrates the change process of the state variables of the delay system (3.34) in the time 

interval [0,1.4]. 
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