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Abstract 

The work presented here describes how an efficient controller can be effectively designed by optimizing 

performance subject to robustness constraints of the system. The optimization problem is solved using 

PSO, ABC and ACO techniques. These methods present a general process description in terms of 

processed data and it can cope with many different parameters. Here in the presented work process is 

effectively explained with the help of examples and some pitfalls in optimization are discussed. 

Keywords: PSO, ACO, ABO. 

 

1. Introduction 

Controller design is a very good problem because it requires the in-depth calculations of many factors 

related to performance and robustness [1]. Many features can be captured by formulating the design 

problem as a constrained optimization problem [2], [3]. 

PID controllers have been designed using optimization earlier with similar problem formulations [6], [7], 

[8]. The method proposed here is similar to M-constrained Integral Gain Optimization, MIGO [9] but it 

shows more flexible constraints and the computations are so simple as compare to previous one. Similar 

approaches using linear programming can be found in [10], and [11] for MIMO systems. 

The most used type of closed-loop controller architecture and the one that is employed in this work is 

PID. PID controllers, if tuned correctly, can increase the stability of the system, reduce the response time 

needed to reach the reference value and reduce the steady state error to zero. A PID controller can be 

tuned using 3 variables Proportional (P), Integral (I) and Derivative (D). These three values are then 

added to provide the process input. Figure 4.2 shows the structure of a PID controller. 
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Figure 4.2, PID control scheme, r(t) is the reference value at time t, e(t) is the error value at time t, u(t) 

is the output of the controller (input of the process) at time t and y(t) is the output of the system at 

time t, from ref [6] 

The P value compensates for the present error and is just a multiplication of the proportional gain Kp 

multiplied by e(t) (error on time t). The I value compensates for the errors in the past, is calculated by 

multiplying the internal gain Ki and the integration of e(t). The D value is a prediction for errors in the 

future, based on the current rate of errors and is calculated by multiplying the derivative gain Kd and the 

differentiation of e(t).  

2. Design Methodology 

2.1 Dynamic Particle Swarm Optimization 

 

A dynamic particle swarm optimization (PSO) algorithm [15] is based on time-varying cognitive (c1) and 

the social component (c2) with or without varying inertia weight. It is desirable to encourage searching 

the solution through the entire search space without trapping around local solution as well as making 

particle convergence towards the global solution. 

Proper control of c1 and c2 in addition to inertia weight w, will help to reach the optimal solution in an 

efficient way in PSO [5] with varying inertia weight. It may be possible for individuals not get trapped in 

local minima at an early stage and converge towards the global solution at the latter stage using the 

iterative cognitive, social parameters with constant or varying inertia weight. 

2.2 Artificial Bee Colony Optimization 

 

In 2013, El Telbany [8] has developed an artificial bee colony (ABC) algorithm, a population-based 

search technique from scrounging behavior of bees for solving optimization problems. In ABC algorithm, 

the bees are divided as employed bees, onlooker bees, and scout bees. 

The employed bees find the food sources position and share the information to onlooker bees at the hive. 

On the other hand, onlooker bees select the high-quality food sources based on nectar information and 

search further around the selected food sources.  

The ABC algorithm begins with the initial population of food source positions (Sp). The ith food source 

is defined with the d-dimensional vector Pi = [pi1, pi2… pid ] for i = 1,2,…….,Sp. Each food source 

position/solution is generated using equation (1). 
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pij = pmin ,j + rand 0,1 (pmax ,j − pmin ,j        (1) 

where j = 1,2,……..,d. 

In ABC algorithm, each food source position corresponds to six PMDC motor parameters to be estimated. 

The position of the food sources is limited using equation (1). After initialization, all employed bees 

search for the food sources and generate candidate food source position/solution using equation (2). 

vij = pij + ∅ij (pij − pgj )        (2) 

where g = 1,2, ……… . . , Sp  and ∅ij is a random value in the range [−1,1]. 

After generation of new food source position, the fitness of the new food source position is evaluated. The 

employed bees would replace the previous food sources position with new one; if the fitness value of the 

new food sources is better otherwise the employed bees retain the previous food source position. The 

employed bees share food source position and nectar information to onlooker bees. 

An onlooker bees select the food sources depending on the probability value estimated using equation (3). 

        (3) 

Where fiti is the fitness value of ith food source position which depends on food source position. The 

number of food source position Sp is equal to the number of employed bees/onlooker bees. 

The food source position is abandoned in case no improvement in the food source position is observed for 

predetermined number of cycles. Subsequently, scout bees discover the new food source position using 

equation (2). The new food source discovered by the scout bees will replace the abandoned one. This 

process of identification of best food source position is continued until the termination criteria are reached 

or the maximum number of iteration is reached.  

2.3 Ant Colony Optimization  

The Dorigo [13] [14] has proposed ant colony optimization (ACO) from the inspiration of ant, to find an 

optimal path between food and nest. The optimal solution is found via the amount of pheromone on the 

ground. The parameters are limited in the range and are given by equation (4). Each parameter is the 

vector corresponds to a layer/level. The upper and lower limits of the parameter depend on the user 

experience and divided into q number of nodes with possible values. 
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FIGURE 5. Flowchart of the ACO algorithm. 

Ant colony optimization algorithm begins with initialization of ants and equal amounts of pheromone 

trail. The number of layers is six, constituting a motor parameter in each layer. Each layer consists of q 

nodes with permissible values assigned to each node using equation (4). 

At each iteration, ant assumes the path using equation (4) to construct the probabilistic state transition rule 

for a complete solution. The state transition rule is mainly based on the state of pheromone. 

        (4) 

The objective function is evaluated corresponding to the complete path to determine best and worst path 

of H ants. Subsequently, the optimal solution is obtained when all the ants follow the same best path. 

If optimal solution is not obtained, the pheromone information is updated using equation (5). 

     (5) 

III. Results and Discussion 

The dynamic PSO optimization algorithm needs a less number of iterations compared to other methods.  
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FIGURE 7. Fitness Function of Dynamic PSO 

 

FIGURE 8. Fitness Function of PSO 
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FIGURE 9. Fitness Function of ACO 

 

FIGURE 10. Fitness Function of ABC 

 

Ant colony optimization with constant inertia weight as well as standard PSO takes a number of iterations 

for convergence. However, dynamic PSO with varying inertia weight needs less iteration compared to 

other techniques considered. Further, it is clear that dynamic PSO algorithms takes less number of 

iteration for convergence and performance is significantly closed to dynamic PSO with varying inertia 

weight algorithms. Therefore, dynamic PSO algorithm may be considered for less computation and less 

error in the estimation of motor parameter. 

IV. Conclusion 

In this paper, applications of the convex-concave algorithm, dynamic PSO with constant inertia weight 

and dynamic PSO with varying inertia weight algorithms, ABC, and ACO algorithms have been studied 

for parameter estimation of a motor along with experimental tests. The dynamic PSO algorithm a variant 

of standard PSO, modifying parameter iteratively improves the parameter estimation accuracy. It is 

evident that the dynamic PSO with varying inertia and artificial bee colony algorithms may be used to 
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obtain motor parameter with more accuracy without being trapped in local minima. The artificial bee 

colony algorithm may be preferred for estimation of motor parameters due to faster convergence as well 

as relatively less current error except for dynamic PSO with varying inertia. The dynamic PSO with 

varying inertia weight may be used for more accurate motor parameter estimation. 
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