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Abstract:The main aim of this paper, motivated and inspired by Samet et al. [25], we introduce the notion of generalized
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results. An example is given to illustrate the main result. Finally, we give applications of our results to fixed point results in
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1.Introduction and preliminaries :
Throughout this paper [1 and [] represent the set of real numbers and the set of natural
numbers respectively. It is well known that Banach’s contraction principle is one of the pivotal
results of metric fixed point theory. Banach’s contraction principle [1] states that if (X,d) is a

complete metric space and T: X — X is a self mapping such thatd (Tx,Ty) < ad (X, y) ,for all x,
pl ic sp dT: X=X i If mapping such thatd (Tx, Ty) < ad (X, y) for all x,y

€ X,where0 <« <1,then T has a unique fixed point. This theorem ensures the existence uniqueness
of fixed points of certain self maps of metric spaces and it gives a useful contractive method to find
those fixed points. In 1977, Alber et al. [3] generalized Benach’s contraction principle by
introducing the concept of weak contraction mapping in Hilbert spaces. Weak contraction principle
states that every weak contraction mapping on a complete Hilbert space has a unique fixed point.
Rhoades [4] extended weak contraction principle. Khan et al. [17] obtained fixed point theorems in
metric spaces by introducing the concept of altering distance functions.

In particular, Choudhury et al. [10] obtained a generalization of weak contraction principle in
metric spaces by using altering distance functions as follows.
Theorem 1.1 ([10]):  Suppose that a mapping g : X — X where X is a metric space with metric

d, satisfies the following condition.
w(d(gx gy))

< w[max {d(x,y), d(x,gx),d(y,ay), %{d (x, gy)+d(y,gx)}}J
— ¢(max{d(x,y),d(y,)}) (L.1)
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for all x,y € X, where ¢:[0,00) — [0,00) is a continuous function, and y :[0,00) — [0,00) is an
altering distance functions, that is, v is a nondecreasing and continuous function, and 1//(t) =0 if

and only if t=0. Then T has a unique fixed point.

Matthews [18] introduced the notion of partial metric spaces, and extended Banach’s
contraction principle to partial metric spaces, and then a lot of authors gave fixed point results in
partial metric spaces (see [7, 19-23]). Also, Aydi et al. [24] extended Ekeland’s variational principle
to partial metric spaces, and Aydi et al, [21] extended Caristi’s fixed point theorem to partial metric
spaces.

In particular, Abdeljawad [3] extended the result of Choudhury et al. [10] to partial metric
spaces.

Samet et al.[25] gave a generalization of Banach’s contraction principle and an application to
fixed point results in partial metric spaces.

In this paper, motivated and inspired by Samet et al. [25], we introduce the notion of
generalized weakly contractive mappings in metric spaces and prove a fixed point theorem for
generalized weakly contractive mappings defined on complete metric spaces, which is generalization
of the results of [2,10 -12, 26]. Also, we obtain a coupled fixed point theorem in metric spaces by
applying our main result, and we give applications to fixed point and coupled fixed point theorems in
partial metric spaces.

A function f : X —[0,), where X is a metric space, is called lower semi continuous if, for
all xe X and {X,} =X with limx, =x , we have

f(x) < lim inf f(x,)
Let
¥ = {p:[0,0) |  is continuous and y (t)=0<t=0}
Also, we denote
¢ ={¢:[0,0) | [0,0) | ¢ is lower semicontinuous and ¢(t)=0«<>t=0}
Lemma 1.1 ([27)] If a sequence {X,} in X is not Cauchy, then there exist € >0 and two

subsequences {xm(k)} of {xn(k)} such that m(k) is the smallest index for which m(k) > n(k) > k,

d (xm(k), xn(k)) > e, (1.2)
and
d (xm(k)fl, xn(k)) <e (1.3)

Moreover, suppose that
Then we have,

(1) lim, . d (xm(k), xn(k)) =€,

(2) lim, . d (Xm(k)—l’ Xn(k)—l) =€,
B lim, ., d (X X a) = €5
(4) | ,d (xm(k)_l, Xa(k) ) =€;
2. Fixed point results

Let X be a metric space with metric d, let S: X — X and let ¢: X — [0, ) be a lower semi

continuous function.
Then S is called a generalized weakly contractive mapping if it satisfies the following
condition. :

1//(d (Sx,Sy) +(p(SX)+¢(Sy))
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<y (m(x,y,d,S,v)) - ¢(I(x.y.d,S,9)) V x,ye X, 2.1)
Where v € ¥, gc® and

m(x y,d,S,p) :max{d(x, y)+o(X)+e(y),d(xSx)+e(x)+e(Sx),
d(y.Sy)+o(y) + go(Sy),%{d (x.5y) + o(x) + 0(Sy) (22)

+d(y,5x) +o(y) + (SX)}},
and
1(x,y,d,S,¢) = max{d (x,¥) + o(x) +o(y), d(v.Sy) + o(Yy) +(p(Sy)} (2.3)
Let X be a metric space with metric d, let S: X — X, and let ¢: X —[0,0) be a lower
semi continuous function.
Theorem 2.1 Let X be complete. If S is a generalized contractive mapping, then there exists a

unique z € X suchthatz=Szand ¢(z)=0.

Proof: Let X, € X be a fixed point, and define a sequence {X,} by X, = Sx, forall n=0,

12,......
If X, =X, forsomen, thenX, =X , =SX,, so X, is a fixed point of S, and the proof is
finished.
From now on, assume that X, # X ,, foralln=0,1,2,.....
From (2.2) with x = X, , and y = X, we have
m( 1 X1 S, (0)
= max{d (X, %, )+@ (%) +o(X,),
d (X, SXog )+ @ (X ) +2(SX, 4 ), d (X,, 8%, )+ @ (X, ) +9(SX, ),
_{d( n 17 ) (Xn—l) +¢(an) +d (Xn’SXn—l) +¢(Xn)+¢(sxn—l)}}
Since
%{d(xnl, SX,) + @(Xy ) +@(SX, ) +d (X, 5%, 1) +@(%, )+ (X, )}
1
:E{d(xn—llxm—l)_l_ ¢(Xn—1)+¢(xn+l)+d(xn’xn) }
1
< > {d (Xn—l’xn)+ @(anl)‘k(o(xn)‘kd (Xn’xn+l) +(P Xns1 }
< max{d (X, ;. %, )+ @(X,)+@(%,).d (X, X,.,) + ( ) (XM)},
We obtain
m ,X,,d,S,
(s ?) (2.4)
:maX{d( n-11 )+(0( n-. 1)+¢( ) d(xn’xn+1) ¢(Xn)+¢(xn+1)}
Also, we have
(Xt %y, 0, S, 9)

:max{d (X1 X, )+ 0 (X, )+o(X,).d (Xn,SXn)+(p(Xn)+(/9(SXn)}
=max {d (X, %, )+@(X,1)+9(%,),d (X, X1 )+ @ (X, )+ (X001 )|
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It follows from (2.1) that
w(d (X o) + 2(%)+0(%00))
=y (d (5,1, 5%, )+ 0(SX,; ) +9(Sx,))
< (1(x,2%,8.5,0)) (1 (%,1,%,8.5.0).

d (X, 1, X )+@(X, 1 )+@(%,) <d (X, X1 )+ (X, )+ @ (X1

For some positive integer n, then from (2.5) we obtain

v (d (X0 X)) +0(X,)+0 (X))

<y (d (%, %02 +0(%,)+0(%.0))=8(d (%, %00) + 0 (%, )+ 0(%,.2))

Which implies

¢(d (Xn+1’ ) + (0( n+l)+(0(xn ))= 0
and so

d (Xn+1’ ) + §D( n+1)+(0(xn)
Hence

Xn+1 :Xn and q)(xml)zgo(xn)

Which is a contradiction.
Thus we have

0

0

d(X,, X1 )+ @(X,) +@(Xpr) <A (X1, X, )+ 00X ) +0(X,)

foralln=1,2,3, ...... , and so

M (%, 1%, 0, S,0)=d (X1, % ) +0(%,1) +0(X,)
and

I( 1%, d, S, (D)Zd( n—11 )+¢( n1)+¢(xn)

Foralln=1,2,3, ......
It follow from (2.5) that

w(d (X %) + @(%)+ (X))
<y (d (X X))+ @ (X0 )+ 2(%,))
—¢(d(Xn1, )+§0 n-1 +¢’ )
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(2.5)

(2.6)

.7)

It follows from (2.6) that the sequence {d (X, ,X,.,)+@(X, )+ @(X,.,)} is non increasing.

Thus we have

d(X,, X1 )+@(X,)+@(X, ) > T @8 Nn—>c0
For somer > 0.
Assume thatr > 0.

Letting n —oo in (2.7), by the continuity of y and the lower semi continuity of ¢ it

follows that

v (r) <y (r) = lim inf g (dx, ., %, )+ 9 (%) +0(x,))
v (r)—¢(r)

Since r>0,¢(r)>0. Hence
<y (r

w(r) )-4(r)<w(r)

a contradiction .
Hence,

I/\
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lim {d (X, X,1)+@(%,)+@(Xy1)} = 0

Which implies

lim d( - n+l) 0 (2.8)
and

lim go(xn) =0 (2.9)

Now, we prove that the sequence is Cauchy.
If is not Cauchy, then by Lemma 1.1 there exist £ and subsequences {xm(k)} and{xn(k)}

of such that (1.2) and (1.3) hold.
From (2.2) we have

m(xn(k),xm(k),d,s,(o)

- max{d (Xt X )+ 2 (X0 )+ 2 (X )

%{d( 1 o) + 0 (X )+ 0 (S )8 (X X )+ (X

:max{d(xn(k> o0 )70 %0 )+ 2 (o)

d
d (Xm(k)’ Xm(k)+1)+(ﬂ(xm( )) ( ) (X Xin(k) +1)+(”(Xn(k))+(”(xm(k)+1)

(X Xy ) +0(Xog) + ‘P(Xn<k>+1)} (2.10)
Letting k — oo in (2.10) and applying Lemma 1.1, (2.8), and (2.9), it follows that
klﬁrl m(x() (k),d,S,(p)=e (2.12)

Also, it follows from (2.3) that
I (xn(k), xm(k),d , S,go)

= max{d (xn(k), xm(k))+¢(Xn(k))+(p(xm(k)),d (xm(k), Sxm(k)+1)+go(xm(k))+¢(Sxm(k)),

= max{d (anXm(k))“/’(xn(k))*w(xwk))'d (Xm<k>' Xm<k>+1)+¢<xm<k>)*w(xww)'
Hence,

Bim 1 (%0, X, 4, S,0) = € (2.12)
From (2.1) we have

‘”(d (%o Xoeps) *+ 2 (X )+¢(xm(k)+l))

< (X Xo:01800)) = 8 1 (X 2o 0 S10))

Letting k — oo in this inequality, by Lemma 1.1, the continuity of y , the lower semi
continuity of ¢ , and by (2.9), (2.11), and (2.12) we have

(€)= (e) - 4(e).
Which is a contradiction because ¢(€)> 0.

Hence the sequence {x,} is Cauchy, and Hence
lim X, =zeX exists

n—ow

ISSN NO : 2249-7455

Page No0:5684



International Journal of Management, Technology And Engineering ISSN NO : 2249-7455

Because X is complete. Since ¢ is lower semi continuous.
¢(z) < lim inf o(x,) < lim o(x,) =0,
Which implies
¢(z)=0 (2.13)

It follows from (2.2) that
m(x,2,d,$,9) = max {d(x,,z) + ¢(x,) + ¢(2),
d(x,,S%,) + ¢(x,) + ¢(Sx,).d(z,52) +¢(z)+¢(Sz),
;gux S2) +0(x, )+ 9(S2)+d (2,5%, )+ 9 (z) + (5%, )}
= max{d(x,,2)+(x,) +¢(2),
d(X,, X)) +@(X,)+0(X,.1).d(2,52)+(2)+9(S2),
A (,52)+0(x,) +0(S2)+d (2 %,.)+0(2) -0 (4, -

So, we have
r!L”lm(Xn’ 2,d,S8,9)=d(z,52)+¢(z)+¢(Sz)=d(z,52)+¢(Sz)
(2.14)
Also, we have
lim1(x,,2,d,S,¢) =lim max{d (x,,2)+¢(x,)+¢(z).d(z,52)+¢(z)+¢(Sz)}

nN— oo n—>w

=d(z,Sz)+¢(z)+¢p(Sz)=d(z,5z)+¢(Sz) (2.15)
It follows from (2.1) that

W (d (X1, S2) + @(X,0)+90(S2)) = w(d (Sx,,52)+p(SX, ) +9(S2))

Sz//(m(xn,z,d,S,(p)—¢(I(xn,z,d,S,(p)))
By taking the limit as n—oo in (2.16) and by applying the continuity of  , the lower semi
continuity of ¢, (2,14) and (2.15) we have

w(d(z,52)+¢(Sz)) <w(d(z,52)+¢(Sz))-4(d (z,52)+¢(S2))

Hence d(z,Sz)+¢(Sz)=0, and hencez=Sz and ¢(Sz)=0 .

Suppose that u is another fixed point of S.

Then u=Su and ¢(u)=0
By applying (2.1) withx =z and y = u we have

v(d(z.u)) =y (d(Sz.5u))
w (d(Sz,5u)+9)(Sz)+ ¢(Su))
v(m(zu,d,S,0))-¢(I(z,u,d,S,v))

= y(d(zv)) - ¢(d(zu))

Which implies z =u.
The following example illustrates Theorems 2.1 and shows that it is a real generalized of Theorem 3.1
in [10].

(2.16)

Example 2.1 Let X =[0,0) and d(X,y)=|x—y| for x,yeX ,let y(t) =gt for t>0, and

let
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~t 0<t<1),

“t (0<t<)

o(t) = %t+% (1<t<2),
t (t>2)

ISSN NO : 2249-7455

. . . 1
Then w € ¥, ¢ is lower semi continuous, and Et <g(t)<t t>0..

Define themap S: X — X by

X2

2(1+x)
Assume that a function ¢ : [0,0) — [0,0) is defined by
3t
t)= .
¢( ) 4+ 2t
Then g d .

We now show that (2.1) holds.
Without loss of generality, suppose that X >y .

Then we have

SX =

(
> %{d(x Sy)+%x+%8y+d(y SX)+ %y

1q
2
2{%{d(x Sy)+ x+ Sy+d(y,Sx)+ y+ Sx}

(x+Y) otherwise
1
> =X
2
Thus we have
m(x y,d,S,p)

= max {d (X, ¥)+¢(x) +¢(y),d (x,5X) + ¢(x) + p(Sx
d(y.Sy)+ o(y) + (p(Sy),%{d(x,Sy)Jr(p(x) o (Sy)+

> % max {d (X, y) + X+Y,d (X,5x) +X+Sx,

X,5Y)+ @ (x)+p(Sy)+d (y,Sx)+o(y)+¢(SX)}

)
d

(v, 5x)+o(y)+o(SX)}

d(y,Sy)+y +Sy,%{d (X,Sy)+x+Sy+d(y,Sx)+y+Sx}

= l max{Zx, 2X, 2Y, lx}
2 2

= X.
And
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1(x,y.d,S,9) =max{d(x,y) + o(x) + @(y).d(y,Sy)+e(y) + ¢(Sy)}
< max{d(x,y)+ x+y,d(y, Sy) +y +Sy}
= max {2x, 2y}

= 2X.
Also, we have

w (d(SX,Sy) + @(Sx) + (Sy)) < w(d(Sx,Sy)+Sx+Sy)

2 2 2 2
x y|+x+yJ

2(1+x) 2(l+y)‘ 2(1+x)  2(1+y)

NIWw NDIWw NDw
N
>
N

Where the equality is satisfied when x = 0.
Thus (2.1) is satisfied.

By Theorem 2.1, S has a unique fixed pointz=0, and ¢ Z) =0.
However, (1.1) is not satisfied. In fact, letx=3,y=1and ¢(t)=0,t>0.
Then
45
v (m((x v, 0.5.0))) = 2,
3
6 (1{(xy.a.5.0))) =5,
51
w (d(Sx, Sy)) = ER
and so

w(d (5% Sy)) = % > % =y (m((xy.d,5.0))) - o(1((x.y.d.5.9)))

The proofs of the following Corollary 2.2 and Corollary 2.3 are similar to that of Theorem
2.1. So, here the proofs are omitted.

Corollary 2.2 Let X be complete. Suppose that S satisfies the following condition :
w(d(Sx,Sy) + o(Sx) +9(Sy))

<(m(x,y,d,S,0)) = ¢ (I(x,v.d,S,9))
V X,ye X, where ye ¥ and ¢ € ©.
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Then there exists a unique z € X suchthatz=Szandp(z)=0.

Corollary 2.3 Let ( X,d) be complete. Suppose that S satisfies the following condition:
w (d(Sx,Sy) + o(Sx) +9(Sy))
<

([d(xy)+e(x) +o(y)) = 4(d(xy) + o(x) +o(y))
V X,ye X, where we ¥ and ¢ € ®.
Then there exists a unique z € X suchthatz=Szandp(z)=0.

Corollary 2.4 Let X be complete. Suppose that S satisfies the following condition:
y/(d (S*x,8*y) + o(S*x) +¢(Sky))
<y (m(xy.d,5%9)) - ¢ (1(xy.d,S" 0))
V X,ye X, where ye ¥ ,¢p € ® and k is a positive integer.

Then there exists a unique z € X such that z=Sz and (p(z) =0.
Proof: Let T =S*. Then by Theorem 2.1 T has a unique fixed point, say z.
Then S*2=Tz=z and
w(z)=¢(Tz) = q)(SkZ) =0
Since $**z =Sz.
TSz=S"(Sz)=S""z =Sz,
and so Sz is afixed point of T. By the uniqueness of a fixed point of T, Sz = z.

Remark 2.1  If we have ¢ =0, then y is nondecreasing and continuous, and ¢ is continuous

in Theorem 2.1 ( resp. Corollary 2.3, Corollary 2.4), then we obtain Theorem 3.1 of [10] (resp.
Theorem 2.1 of {12}, Corollary 3.1 of [10]}.

Remark22 If ¢ =0 andif w and ¢ are nondecreasing and continuous in Corollary 2.3, then
we obtain Theorem 2.1 of [12].

Remark2.3 If ¢ =0 and w is nondecreasing and continuous in Corollary 2.2, then we obtain
Theorem 2.2 of [11].
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