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Abstract:The main aim of this paper, motivated and inspired by Samet et al. [25], we introduce the notion of generalized 

weakly contractive mappings in metric spaces and prove the existence and uniqueness of fixed point for such mappings, and 

we obtain a coupled fixed point theorem in metric spaces.  These theorems generalize many previously obtained fixed point 

results.  An example is given to illustrate the main result.  Finally, we give applications of our results to fixed point results in 

partial metric spaces. 
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1.Introduction and preliminaries : 

 Throughout this paper  and represent the set of real numbers and the set of natural 

numbers respectively. It is well known that Banach’s contraction principle is one of  the pivotal 

results of metric fixed point theory. Banach’s contraction principle  1  states that if (X,d) is a 

complete metric space and T:  X X  is a self mapping such that    , ,d Tx Ty d x y ,for all x,y  

, 0 1X where    ,then T has a unique fixed point. This theorem ensures the existence uniqueness 

of fixed points of certain self maps of metric spaces and it gives a useful contractive method to find 

those fixed points.    In 1977, Alber et al. [3] generalized Benach’s contraction principle by 

introducing the concept of weak contraction mapping in Hilbert spaces.  Weak contraction principle 

states that every weak contraction mapping on a complete Hilbert space has a unique fixed point.  

Rhoades [4] extended weak contraction principle.  Khan et al. [17] obtained fixed point theorems in 

metric spaces by introducing the concept of altering distance functions. 

 In particular, Choudhury et al. [10] obtained a generalization of weak contraction principle in 

metric spaces by using altering distance functions as follows. 

Theorem 1.1 ([10]): Suppose that a mapping :g X X  where X is a metric space with metric  

d,  satisfies the following condition. 

   ,d gx gy  

            
1

max , , , , , , , ,
2

d x y d x gx d y gy d x gy d y gx
  

   
  

 

            max , , ,d x y d y gy      (1.1) 
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for all ,x y X , where :[0, ) [0, )     is a continuous function, and :[0, ) [0, )      is an 

altering distance functions, that is,   is a nondecreasing and continuous function, and   0t    if  

and only if  t = 0. Then  T  has a unique fixed point. 

 Matthews [18] introduced the notion of partial metric spaces, and extended Banach’s 

contraction principle to partial metric spaces, and then a lot of authors gave fixed point results in 

partial metric spaces (see [7, 19-23]).  Also, Aydi et al. [24] extended Ekeland’s variational  principle 

to partial metric spaces, and Aydi et al, [21] extended Caristi’s fixed point theorem to partial metric 

spaces. 

 In particular, Abdeljawad [3] extended the result of Choudhury et al. [10] to partial metric 

spaces. 

 Samet et al.[25] gave a generalization of Banach’s contraction principle and an application to 

fixed point results in partial metric spaces. 

 In this paper, motivated and inspired by Samet et al. [25], we introduce the notion of 

generalized weakly contractive mappings in metric spaces and prove a fixed point theorem for 

generalized weakly contractive mappings defined on complete metric spaces, which is generalization 

of the results of [2,10 –12, 26].  Also, we obtain a coupled fixed point theorem in metric spaces by 

applying our main result, and we give applications to fixed point and coupled fixed point theorems in 

partial metric spaces. 

 A function : [0, )f X   , where X  is a metric space, is called lower semi continuous if, for 

all x X  and  nx X   with lim n
n

x x


  , we have 

    lim inf n
n

f x f x
 

  

Let 

   : [0, ) | is continuous and 0 0t t          

Also, we denote 

   : [0, ) | [0, ) | is lowersemicontinuous and 0 0t t          

Lemma 1.1 ([27)] If a sequence  nx  in X is not Cauchy, then there exist 0   and two 

subsequences   m k
x  of   n k

x such that m(k) is the smallest index for which m(k) > n(k) > k, 

     ,
m k n k

d x x   ,        (1.2) 

and 

     1
,

m k n k
d x x


         (1.3) 

Moreover, suppose that    . 

Then we have, 

(1)     lim , ;n m k n k
d x x    

(2)     1 1
lim , ;n m k n k

d x x  
   

(3)     1
lim , ;n m k n k

d x x 
   

(4)     1
lim , ;n m k n k

d x x 
   

 
2. Fixed point results 

Let X   be a metric space with metric d, let :S X X   and  let : [0, )X    be a lower semi 

continuous function. 

 Then S is called a generalized weakly contractive mapping if it satisfies the following 

condition. : 

       ,d Sx Sy Sx Sy     
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      , , , , , , , , , ,m x y d S l x y d S x y X           (2.1) 

Where  ,      and 

 

             

           

      

, , , , max , , , ,

1
, , { ,

2

, } ,

m x y d S d x y x y d x Sx x Sx

d y Sy y Sy d x Sy x Sy

d y Sx y Sx

    

   

 

    

   

  

     (2.2) 

and 

              , , , , max , , ,l x y d S d x y x y d y Sy y Sy           (2.3) 

 Let X be a metric space with metric d,  let :S X X , and  let : [0, )X     be a lower 

semi continuous function. 

Theorem 2.1 Let X be complete.  If S is a generalized contractive mapping, then there exists a 

unique z X  such that z = Sz and   0z   . 

Proof:  Let 0x X   be a fixed point, and define a sequence   nx  by 
1n nx Sx    for all n = 0, 

1,2,…… 

 If  1n nx x   for some n, then 1n n nx x Sx  , so nx  is a fixed point of S, and the proof is 

finished. 

 From now on, assume that  1n nx x    for all n =0,1,2,….. 

 From (2.2) with 1nx x    and ny x    we have 

 

 

     

           

            

1

1 1

1 1 1 1

1 1 1 1

, , ,

max , ,

, , , ,

1
{ , , }

2

n n

n n n n

n n n n n n n n

n n n n n n n n

m x x S

d x x x x

d x Sx x Sx d x Sx x Sx

d x Sx x Sx d x Sx x Sx



 

   

   



 

   

   

  

   

    

 

 

Since 

 

            

            

            

            

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1
, ,

2

1
, ,

2

1
, ,

2

max , , , ,

n n n n n n n n

n n n n n n n n

n n n n n n n n

n n n n n n n n

d x Sx x Sx d x Sx x Sx

d x x x x d x x x x

d x x x x d x x x x

d x x x x d x x x x

   

   

   

   

   

   

   

   

    

     

     

    

 

 

We obtain 

 
 

            
1

1 1 1 1

, , , ,

max , , ,

n n

n n n n n n n n

m x x d S

d x x x x d x x x x



   



       
 (2.4) 

Also, we have 

 

 

            

            

1

1 1

1 1 1 1

, , , ,

max , , ,

max , , ,

n n

n n n n n n n n

n n n n n n n n

l x x d S

d x x x x d x Sx x Sx

d x x x x d x x x x
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It follows from (2.1) that                                                     

  

      

      

     

1 1

1 1

1 1

,

,

, , , , , , , , .

n n n n

n n n n

n n n n

d x x x x

d Sx Sx Sx Sx

m x x d S l x x d S

  

  

   

 

 

 

 

  

 

    (2.5) 

If  

            1 1 1 1, ,n n n n n n nd x x x x d x x x x            

For some positive integer n, then from (2.5) we obtain 

 
      

             

1 1

1 1 1 1

,

, ,

n n n n

n n n n n n n n

d x x x x

d x x x x d x x x x

  

     

 

   

 

     
 

Which  implies 

       1 1, 0n n n nd x x x x       

and so 

      1 1, 0n n n nd x x x x      

Hence 

 1n nx x   and     1 0n nx x     

Which is a contradiction. 

 Thus we have 

            1 1 1 1, ,n n n n n n n nd x x x x d x x x x             (2.6) 

 

for all n = 1, 2, 3, ……, and so 

        1 1 1, , , , ,n n n n n nm x x d S d x x x x        

and 

        1 1 1, , , , ,n n n n n nl x x d S d x x x x        

For all n = 1,2,3, …… 

It follow from (2.5) that 

      

      

      

1 1

1 1

1 1

,

,

,

n n n n

n n n n

n n n n

d x x x x

d x x x x

d x x x x

  

  

  

 

 

 

 

  

  

     (2.7) 

 It follows from (2.6) that the sequence       1 1,n n n nd x x x x    is non increasing. 

Thus we have 

       1 1,n n n nd x x x x r as n       

For some 0r  . 

 Assume that r > 0. 

 Letting n   in (2.7), by the continuity of   and the lower semi continuity of    it 

follows that 

 
        

   

1 1lim inf , ( )n n n n
n

r r dx x x x

r r

    

 

 


   

 
 

Since  0, 0r r  .  Hence 

        r r r r       

a contradiction . 

Hence, 
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      1 1lim , 0n n n n
n

d x x x x  
 

    

Which implies 

  1lim , 0n n
n

d x x 
 

         (2.8) 

and  

  lim 0n
n

x


         (2.9) 

Now, we prove that the sequence   is Cauchy. 

 If is not Cauchy, then by Lemma 1.1 there exist    and subsequences    m k
x  and   n k

x     

of such that (1.2) and (1.3) hold. 

 From (2.2) we have 

     , , , ,
n k m k

m x x d S   

           max , ,
n k m k n k m k

d x x x x   
     

                      , , , ,
n k n k n k n k m k m k m k n k

d x S x x Sx d x Sx x Sx        

 
                      1

, ,
2

n k m k n k m k m k n k m k n k
d x Sx x Sx d x Sx x Sx         

                       1 1
max , , , ,

n k m k n k m k n k n k n k n k
d x x x x d x x x x   

 
      

 
                     1 1 1 1

1
, , { ,

2
m k m k m k m k n k m k n k m k

d x x x x d x x x x   
   

     

           1 1
,

m k n k m k n k
d x x x x 

 
        (2.10) 

Letting k  in (2.10) and applying Lemma 1.1,  (2.8), and (2.9), it follows that   

      lim , , , ,
n k m k

k
m x x d S 


       (2.11) 

Also, it follows from (2.3) that  

     , , , ,
n k m k

l x x d S   

                       1
max , , , ,

n k m k n k m k m k m k m k m k
d x x x x d x Sx x Sx   


      

                      1 1
max , , , .

n k m k n k m k m k m k m k m k
d x x x x d x x x x   

 
      

Hence, 

     lim , , , ,
n k m k

k
l x x d S 


        (2.12) 

From (2.1) we have 

 
           

           
1 1 1

,

, , , , , , , , .

n k m k n k m k

n k m k n k m k

d x x x x

m x x d S l x x d S

  

   

  
 

 
 

 Letting k    in this inequality, by Lemma 1.1, the continuity of   , the lower semi 

continuity of   ,  and by (2.9), (2.11), and (2.12) we have 

       ,         

Which is a contradiction  because   0   . 

 Hence the sequence {xn} is Cauchy, and Hence 

  lim n
n

x z X


    exists 

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:5684



Because X is complete.   Since    is lower semi continuous. 

       lim inf lim 0,n n
n n

z x x  
  

    

Which  implies   

    0z         (2.13) 

It follows from (2.2) that   

         , , , , max , ,n n nm x z d S d x z x z      

              , , , ,n n n nd x Sx x Sx d z Sz z Sz        

               
1

, , }
2

n n n nd x Sz x Sz d z Sx z Sx         

        max , ,n nd x z x z     

              1 1, , , ,n n n nd x x x x d z Sz z Sz         

               1 1

1
, , } .

2
n n n nd x Sz x Sz d z x z x          

So, we have 

             lim , , , , , ,n
n

m x z d S d z Sz z Sz d z Sz Sz   


      

 (2.14) 

Also, we have 

               lim , , , , lim max , , ,n n n
n n

l x z d S d x z x z d z Sz z Sz    
 

      

             , ,d z Sz z Sz d z Sz Sz         (2.15) 

It follows from (2.1) that  

             

     
1 1, ,

, , , , , , , ,

n n n n

n

d x Sz x Sz d Sx Sz Sx Sz

m xn z d S l x z d S

     

   

     

 
 (2.16) 

 By taking the limit as n  in (2.16) and by applying the continuity of   ,  the lower semi 

continuity of    , (2,14)  and (2.15) we have 

                , , ,d z Sz Sz d z Sz Sz d z Sz Sz           

Hence     , 0d z Sz Sz  ,  and hence z = Sz  and    0Sz    . 

 Suppose that u  is another fixed point of S. 

 Then  u Su   and   0u   

By applying (2.1) with x = z and y = u  we have 

 

     

     

     

     

, ,

, )

, , , , , , , ,

, ,

d z u d Sz Su

d Sz Su Sz Su

m z u d S l z u d S

d z u d z u

 

  

   

 



  

 

 

  

 Which implies z =u.  

The following example illustrates Theorems 2.1 and shows that it is a real generalized of Theorem 3.1 

in [10]. 

Example 2.1 Let [0, )X     and  ,d x y x y    for ,x y X , let   
3

2
t t    for  0t  ,  and 

let 
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1
0 1 ,

2

1 1
1 2 ,

2 2

2 .

t t

t t t

t t




 




   

 



 

Then  ,     is lower semi continuous, and  
1

, 0.
2

t t t t   . 

Define the map  S : X   X  by 

 
 

2

2 1

x
Sx

x



. 

Assume that a function : [0, ) [0, )      is defined by 

  
3

4 2

t
t

t
 


 . 

Then        . 

We now show that (2.1) holds. 

Without loss of generality, suppose that  x y  . 

Then we have 

             
1

, ,
2

d x Sy x Sy d y Sx y Sx         

    
1 1 1 1 1

, ,
2 2 2 2 2

d x Sy x Sy d y Sx y Sx
 

      
 

 

     
1

, ,
2

d x Sy x Sy d y Sx y Sx
 

      
 

 

 
 

 

2 21

2 1 2 1

1

2

x x
x y

x x

x y otherwise

   
            




 

 
1

.
2

x  

Thus we have  

  , , , ,m x y d S   

            max , , , ,d x y x y d x Sx x Sx         

                   
1

, , { , , }
2

d y Sy y Sy d x Sy x Sy d y Sx y Sx             

    
1

max , , , ,
2

d x y x y d x Sx x Sx      

       
1

, , { , , }
2

d y Sy y Sy d x Sy x Sy d y Sx y Sx        

 
1 1

max 2 , 2 , 2 ,
2 2

x x y x
 

  
 

 

 x . 

And 
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, , , , max , , ,

max , , ,

max 2 , 2

2 .

l x y d S d x y x y d y Sy y Sy

d x y x y d y Sy y Sy

x y

x

        

    





 

Also, we have 

 

         

       

 

2 2 2 2

2

2

, ,

3

2 2 1 2 1 2 1 2 1

3 2
.

2 2 1

3
.

2 1

d Sx Sy Sx Sy d Sx Sy Sx Sy

x y x y

x y x y

x

x

x

x

       

 
    

     







 

 

Hence, 

 

     

      

2

3 3 / 2
, , , , , , , ,

2 1

3
.

2 1

,

x
m x y d S l x y d S x

x

x

x

d Sx Sy Sx Sy

   

  

  





  

 

Where the equality is satisfied when x = 0. 

 Thus (2.1) is satisfied. 

By Theorem 2.1, S has a unique fixed point z = 0,   and   0z   . 

However, (1.1) is not satisfied.  In fact, let x = 3, y = 1 and    0, 0t t    . 

Then 

  

   

   

  

45
, , , , ,

2

3
, , , , ,

4

51
, ,

2

m x y d S

l x y d S

d Sx Sy

 

 









 

and  so 

            
204 147

, , , , , , , , ,
8 8

d Sx Sy m x y d S l x y d S         

 The proofs of the following Corollary 2.2 and Corollary 2.3 are similar to that of Theorem 

2.1.  So, here the proofs are omitted. 

 

Corollary 2.2 Let X be complete.  Suppose that S satisfies the following condition : 

 

      

     

,

, , , , , , , ,

, , .

d Sx Sy Sx Sy

m x y d S l x y d S

x y X where and
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 Then there exists a unique z X  such that z = Sz and   0z  . 

 

Corollary 2.3 Let ( X,d )  be complete.  Suppose that S satisfies the following condition: 

 

      

             

,

, ,

, , .

d Sx Sy Sx Sy

d x y x y d x y x y

x y X where and

  

    

 

 

     

   

 

 Then there exists a unique z X  such that z = Sz and   0z  . 

 

Corollary 2.4 Let X   be complete.  Suppose that   S satisfies the following condition: 

 

      

     

,

, , , , , , , ,

, , , int .

k k k k

k k

d S x S y S x S y

m x y d S l x y d S

x y X where and k is a positive eger

  

   

 

 

 

   

 

 Then there exists a unique z X  such that z = Sz  and    0z  . 

Proof: Let T = S
k
 .  Then by Theorem 2.1 T has a unique fixed point,  say  z. 

 Then  S
k
z = Tz = z  and 

        0kz Tz S z       

Since 
1kS z Sz  . 

   1k kTSz S Sz S z Sz   , 

and so Sz  is a fixed point of  T.  By the uniqueness of a fixed point of T, Sz = z. 

 

Remark 2.1 If we have 0  ,  then   is nondecreasing and continuous,  and    is continuous 

in Theorem 2.1 ( resp. Corollary 2.3,  Corollary 2.4), then we obtain Theorem 3.1 of [10] (resp. 

Theorem 2.1 of {12},  Corollary 3.1  of [10]}. 

 

Remark 2.2 If  0    and if    and    are nondecreasing and continuous in Corollary 2.3, then 

we obtain Theorem 2.1  of [12]. 

 

Remark 2.3 If  0    and     is nondecreasing and continuous in Corollary 2.2, then we obtain 

Theorem 2.2  of [11]. 
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