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Abstract:In this paper, motivated and inspired by Samet et al., we introduce the notion of generalized weakly contractive 

mappings in metric spaces and prove the existence and uniqueness of fixed point for such mappings, and we obtain a coupled 

fixed point theorem in metric spaces.  These theorems generalize many previously obtained fixed point results.  An example is 

given to illustrate the main result.  Finally, we give applications of our results to fixed point results in partial metric spaces. 

MSC: 47H10; 54H25 

Keywords: Fixed point; coupled fixed point; generalized weak contractive mapping. 

 

1. Introduction and preliminaries: 

 In 1977, Alber et al. [1] generalized Banach’s contraction principle by introducing the concept of 

weak contraction mapping in Hilbert spaces.  Weak contraction principle states that every weak 

contraction mapping on a complete Hilbert space has a unique fixed point.  Rhoades [2] extended weak 

contraction principle.  Khan et al. [15] obtained fixed point theorems in metric spaces by introducing the 

concept of altering distance functions. 

 In particular, Choudhury et al. [8] obtained a generalization of weak contraction principle in 

metric spaces by using altering distance functions as follows. 

Theorem 1.1 ([8]) Suppose that a mapping :g X X  where X is a metric space with metric d,  

satisfies the following condition. 

   ,d gx gy  

            
1

max , , , , , , , ,
2

d x y d x gx d y gy d x gy d y gx
  

   
  

 

            max , , ,d x y d y gy      (1.1) 

for all ,x y X , where :[0, ) [0, )     is a continuous function, and :[0, ) [0, )      is an 

altering distance functions, that is,   is a nondecreasing and continuous function, and   0t    if  and 

only if  t = 0. 

 Then  T  has a unique fixed point. 

 Matthews [16] introduced the notion of partial metric spaces, and extended Banach’s contraction 

principle to partial metric spaces, and then a lot of authors gave fixed point results in partial metric spaces 

(see [5, 17-30]).  Also, Aydi et al. [31] extended Ekeland’s variational  principle to partial metric spaces, 

and Aydi et al, [32] extended Caristi’s fixed point theorem to partial metric spaces. 

 In particular, Abdeljawad [3] extended the result of Choudhury et al. [8] to partial metric spaces. 
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 Samet et al.[33] gave a generalization of Banach’s contraction principle and an application to 

fixed point results in partial metric spaces. 

 In this paper, motivated and inspired by Samet et al. [33], we introduce the notion of generalized 

weakly contractive mappings in metric spaces and prove a fixed point theorem for generalized weakly 

contractive mappings defined on complete metric spaces, which is generalization of the results of [8 – 10, 

33].  Also, we obtain a coupled fixed point theorem in metric spaces by applying our main result, and we 

give applications to fixed point and coupled fixed point theorems in partial metric spaces. 

 A function : [0, )f X   , where  X  is a metric space, is called lower semi continuous if, for all 

x X  and  nx X   with lim n
n

x x


  , we have 

    lim inf n
n

f x f x
 

  

Let 

   : [0, ) | is continuous and 0 0t t           

Also, we denote 

   : [0, ) | [0, ) | is lowersemicontinuous and 0 0t t          

Lemma 1.1 ([34)] If a sequence  nx  in X is not Cauchy, then there exist 0   and two 

subsequences   m k
x  of   n k

x such that m(k) is the smallest index for which m(k) > n(k) > k, 

     ,
m k n k

d x x   ,        (1.2) 

and 

     1
,

m k n k
d x x


         (1.3) 

Moreover, suppose that    . 

Then we have, 

(1)     lim , ;n m k n k
d x x    

(2)     1 1
lim , ;n m k n k

d x x  
   

(3)     1
lim , ;n m k n k

d x x 
   

(4)     1
lim , ;n m k n k

d x x 
   

 

2. Fixed point results 

Let X   be a metric space with metric d, let :T X X   and let : [0, )X    be a lower 

semicontinuous function. 

 Then T is called a generalized weakly contractive mapping if it satisfies the following condition. : 

     ,d Tx Ty Ty   

      , , , , , , , , , ,m x y d T l x y d T x y X           (2.1) 

Where  ,      and 

 

             

           

      

, , , , max , , , ,

1
, , { ,

2

, } ,

m x y d T d x y x y d x Tx x Tx

d y Ty y Ty d x Ty x Ty

d y Tx y Tx

    

   

 

    

   

  

     (2.2) 
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and 

              , , , , max , , ,l x y d T d x y x y d y Ty y Ty           (2.3) 

 Let X be a metric space with metric d,  let :T X X , and  let : [0, )X     be a lower 

semicontinuous function. 

Theorem 2.1 Let X be complete.  If T is a generalized contractive mapping, then there exists a unique 

z X  such that z = Tz  and   0z   . 

 

3.  Discussion 

In the section, we obtain a new coupled fixed point result from Theorem 2.1. 

 Let  X  be  nonempty set. 

 We say that   ,x y X X    is a coupled fixed point [35] of a mapping  :G X X X    if  

 ,G x y x   and  ,G y x y . 

Lemma 3.1 ([36)] Let X be a nonempty set,   ,x y X X    and  let :G X X X   . 

 Then the following are equivalent. 

 (1)  G(x, y) = x  and  G(y, x) = y; 

 (2)  H(x,y)  =  (x, y), that is ,  H  has a fixed point  (x,y), 

  Where  :H X X X X     is mapping defined by 

        , , , ,H x y G x y G y x       (3.1) 

 

Lemma 3.2([37)] Let (X, d) be a complete metric space (resp. complete partial metric space ). 

Define : [0, )X X       by 

          , , , max , , ,x y u v d x u d y u      (3.2) 

 Then  ,X X    is a complete metric space (resp. complete partial metric space). 

 Let (X, d) be a metric space (or partial metric space), : ,G X X X   and let  

   : , ,H X X X X      be a mapping defined as in (3.1). 

 Let 

    

        

             

             

            

              

, , , , , ,

max max , , , , ,

max , , , , , , , , , ,

max , , , , , , , , , ,

1
[max{ , , , , , , , , ,

2

max , , , , , , , , , ] ,

M x y u v d G

d x u d y v x y u v

d x G x y d y G y x x y G x y G y x

d u G u y d v G v u u v G u v G v u

d x G u v d d G v u x y G u v G v u

d u G x y d v G y x u v G x y G y x



 

 

 

 

 



 

 

 

 

 

  

 

 

 

  

 

and let 

 

    

        

             

, , , , , ,

max max{ , , , , , ,

max , , , , , , , , , }

L x y u v d G

d x u d y v x y u v

d u G x y d v G y x u v G x y G y x
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where  : [0, )X X     . 

 Then we have 

 

    

        

         

         

         

          

    

, , , , , ,

max , , , , , ,

, , , , , ,

, , , , , ,

1
, , , , ,

2

, , , , , ]

, , , , , , .

M x y u v d G

x y u v x y u v

x y H x y x y H x y

u v H u v u v H u v

x y H u v x y H u v

u v H x y u v H x y

m x y u v H



  

  

  

  

  

 



 

 

 

 

 



  

 

 

  

  



   (3.3) 

Also, we have 

          , , , , , , , , , , , ,L x y u v d G l x y u v H       (3.4) 

 

Theorem 3.1 Let X be complete.  Suppose that :G X X X    is a mapping such  

                , , , , , , , , ,d G x y g u v G x y G y x G u v G v u     

             , , , , , , , , , , , , ,M x y u v d G L x y u v d G       (3.5) 

for all (x,y), (u, v)   X   X , where ,     and : [0, )X X     is lower semi continuous. 

 The  G  has a unique coupled fixed point  ,x y X X      and   , 0x y    . 

Proof :  Let   be the metric on  X X  defined as (3.2), and let   

   : , ,H X X X X      be a mapping defined as in (3.1) for (x,y), (u, v)   X   X. 

 It follows from (3.3), (3.4) and (3.5) that 

                 , , , , , , , , , , , , , , ,H x y H u v m x y u v H l x y u v H           

for  (x,y), (u, v)   X   X.  

 By Theorem 2.1, H  has a unique fixed point, and so by Lemma 3.1  G has a unique coupled fixed 

point. 

 

Corollary 3.2 Let X be complete.  Suppose that  :G X X X    is a mapping such that  

             , , , , , , , ,d G x y G u v G x y G u v g v u   

               , , , , , , , , , , , ,M x y u v d G M x y u v d G       

for all (x,y), (u, v)   X   X ,  where ,     and : [0, )X X     is lower semi continuous. 

 Then  G  has a unique coupled fixed point  ,x y X X      and   , 0x y    . 

Corollary 3.3 Let  X be complete.  Suppose that  :G X X X    is a mapping such that  

                , , , , , , , , ,d G x y G u v G x y G y x G u v G v u     
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             max , , , , , )d x u d y v x y u v       

              max , , , , ,d x u d y v x y u v       

for all (x,y), (u, v)   X   X ,  where ,     and : [0, )X X     is lower semi continuous. 

 Then  G  has a unique coupled fixed point  ,x y X X      and   , 0x y    . 

 Taking 0    in Theorem 3.1, we have the following corollary. 

Corollary 3.4 Let  X be complete.  Suppose that  :G X X X    is a mapping such that  

                , , , ( , , , , , ,0 , , , , , ,d G x y G u v M x y u v d G L x y u v d G o     

 for all (x,y), (u, v)   X   X ,  where ,     . 

 Then  G  has a unique coupled fixed point. 

Corollary 3.5 Let  X be complete.  Suppose that  :G X X X    is a mapping such that  

 
     

         

, , ,

, , , , , ,0 , , , , ,0

d G x y G u v

M x y u v d G M x y u v d G



  
 

for all (x,y), (u, v)   X   X ,  where ,     . 

 Then  G  has a unique coupled fixed point. 

Corollary 3.6 Let  X be complete.  Suppose that  :G X X X    is a mapping such that  

 
     

            

, , ,

, , , max , , ,

d G x y G u v

M x u d y v d x u d y u



  
 

for all (x,y), (u, v)   X   X ,  where ,     . 

 Then  G  has a unique coupled fixed point. 

 

4.  Applications : 

In this section, we give application to fixed point theorems in partial metric spaces. 

 Recall some definitions and basic results in partial metric spaces.  For more details, we refer to 

[16]. 

 Let Z be a nonempty set.  A function : [0, )p Z Z    is called a partial metric on Z if, for all 

, ,x y z Z  the following are satisfied: 

(1)       , , , ;p x x p y y p x y x y      

(2)     , , ;p x x p x y  

(3)     , , ;p x y p y x  

(4)         , , , , .p x z p x y p y z p y y    

The pair (Z ,p) is called a partial metric space. 

 An example of a partial metric defined on [0, )   is     , max , , , 0.p x y x y x y    For more 

examples of partial metrics, we refer to [16]. 

 It is well known that each partial metric  p  on a nonempty set  Z generates a T0 topology on Z 

and that   , : 0,B x x Z     is a base for the topology, where  

      , : , ,B x y Z p x y p x x       for all x Z   and 0  . 

 Also, it is known that the function : [0, )sp Z Z    defined by 

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:5694



         , 2 , , ,p x y p x y p x x p y y      (4.1) 

is a metric on  Z. 

 Let  Z  be a partial metric space with partial metric  p,  let     nx Z  be a sequence, and let 

x Z .  Then  we say that 

(1)   nx  is convergent to x  if    lim , ,n np x x p x x    ; 

(2)   nx  is called a Cauchy sequence if there exists   ,lim ,n m n mp x x
 such that it is finite. 

(3)  Z  is complete if every Cauchy sequence in Z is convergent to a point z Z such that 

    
,
lim , ,n m

n m
p x x p z z


 . 

Remark 4.1 A partial metric space Z is complete if and only if for every Cauchy sequence    nx  in  

Z,  there exists z Z  such that  

      
, ,
lim , lim , ,n m n

n m n m
p x x p x z p z z

 
   

Remark 4.2 Let   nx Z  be a sequence, and  let  x Z .  If the sequence  nx  is convergent to  x  

in (Z,ps), then it is convergent to  x  in (Z, p), and the converse is not true (see (16]). 

 

4.1  Fixed points on partial metric spaces  

Theorem 4.1 Let Z be complete with partial metric  p.  Suppose that  T : Z    Z  is a mapping such 

that  

              
1

, max , , , , , , , ,
2

p Tx Ty p x y p x Tx p y Ty p x Ty p y Tx 
  

   
  

 

       max , , ,p x y p y Ty      (4.2) 

for all , ,x y Z  where   and      . 

 Then there exists a unique  z Z  such that  z = Tz and p(z,z) = 0. 

 

Proof  from (4.1) we have  

  
     , , ,

,
2

sp x y p x x p y y
p x y

 
  

for all ,x y Z . 

 Let   
 ,

,
2

sp x y
d x y    and  

 ,

2

p x x
x    for all ,x y Z  . 

 Then Z is a complete metric space with metric d, and : [0, )Z    is a lower semicontinuous 

function.  Also, (4.2) reduces to (2.1).  By Theorem 2.1 there exists a unique    z Z  such that z = Tz  

and  p(z,z) = 0. 

Remark 4.3 Theorem 4.1 is a generalization of Theorem 8 of [3].  It fact, let    and   be 

nondecreasing and continuous functions. 

 Then Theorem 4.1 reduces to Theorem 8 of [3]. 

 

Theorem 4.2 Let Z be complete with partial metric p.  Suppose that T : Z    Z  is a mapping such that  

              
1

, max , , , , , , , ,
2

p Tx Ty p x y p x Tx p y Ty p x Ty p y Tx 
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1

max , , , , , ,
2

p x y p y Ty p x Ty p y Tx
  

   
  

    

for all , ,x y Z  where   and      . 

 Then there exists a unique  z Z  such that  z = Tz and p(z,z) = 0. 

 

Remark 4.4 If   is continuous in Corollary 4.2, then we obtain Theorem 2.5 of [6]. 

 

Corollary 4.3 Let Z be complete with partial metric  p.  Suppose that  T : Z    Z    is a mapping such 

that          , , ,p Tx Ty p x y p x y    

for all , ,x y Z  where   and      . 

 Then there exists a unique  z Z  such that  z = Tz and p(z,z) = 0. 

 

4.2 Coupled Fixed points on partial metric spaces 

Theorem 4.4  Let Z be complete with partial metric  p.  Suppose that  G : Z    Z   Z    is a mapping 

such that  

      , , ,p G x y G u v  

                , , , , , ,0 , , , , , ,0M x y u v p G L x y u v p G     (4.3) 

for all    , , ,x y u v Z Z   , where   and      . 

 Then G has a unique coupled fixed point. 

 

Proof :  Let   be a partial metric on ZZ defined as in(3.2), and let    : , ,H Z Z Z Z      be a 

mapping defined as in (3.1). 

 It follows from (4.3), (3.3), and (3.4) with  0    that 

                , , , , , , , ,0 , , , , , ,0p H x y H u v m x y u v H l x y u v H      

for all    , , , .x y u v Z Z   

 By Theorem 4.1,  H  has a unique fixed point, and so by Lemma 3.1  G  has a unique coupled 

fixed point. 

 

Theorem 4.5  Let Z be complete with partial metric p.  Suppose that G : Z    Z   Z    is a mapping 

such that  

      , , ,p G x y G u v  

                , , , , , ,0 , , , , , ,0M x y u v p G M x y u v p G      

for all    , , ,x y u v Z Z   , where   and      . 

 Then G has a unique coupled fixed point. 

 

Corollary 4.6 Let  Z  be a complete with partial metric  p.  Suppose that  :G Z Z Z   is a mapping 

such that 

      , , ,p G x y G u v  
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                max , , , max , , ,p x y p u v p x y p u v    

for all    , , ,x y u v Z Z   , where   and      . 

 Then G has a unique coupled fixed point. 

 

5  Conclusions : 

 Motivated by the result of Samet et al. [33], we introduce the notion of generalized weakly 

contractive mappings and prove the existence and uniqueness of fixed points for such mappings.  We give 

applications to the existence of fixed point in partial metric spaces. 

 This investigation can be extended to a quasi-metric spaces with applications to studies of fixed 

points in quasi-partial metric spaces. 
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