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Abstract – The aim of this paper is to study thermal stresses of a circular plate, in which boundary conditions 
are of radiation type. We apply integral transform techniques and obtained the solution of the problem. 
Numerical calculations are carried out for a particular case and results are depicted graphically.  
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1.  INTRODUCTION 

Nowacki [3] has considered the direct and inverse problem of thermo elasticity of a thin circular plate. 
Wankhede [6] has determined the quasi-static thermal stresses in circular plate subjected to arbitrary initial 
temperature on the upper face with lower face at zero temperature. Roy Choudhari [5] has succeeded in 
determining the quasi-static thermal stresses in a circular plate subjected to transient temperature along the 
circumference of circular upper face with lower face at zero and the fixed circular edge thermally insulated. 
Khobragade [7] has studied Thermoelastic analysis of a thick hollow cylinder with radiation 
conditions. Meshram et al. [9]  have discussed  steady state thermoelastic problems of semi-infinite 
hollow cylinder on outer curved surface.  

This paper is concerned with inverse transient thermoelastic problem of a circular plate occupying the space 
hzhar  ,0  with radiation type boundary conditions. 

2.  STATEMENT OF THE PROBLEM-I 

Consider a circular plate of thickness 2h occupying the space ,0: arD  hzh  . The material is isotropic, 

homogeneous and all properties are assumed to be constant.  

The equation for heat conduction as [3] is  
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where k is the thermal diffusivity of the material of the  plate (which is assumed to be constant).  

Subject to the initial and boundary conditions 

hzharallforTMt  ,00)0,0,1,(  (2.2) 

0,)(),,(),0,1,(  thzhallforunknowntzGaTMr  (2.3) 

),(),,1,( 1 trfhkTMz  , for all 0,0  tar  (2.4) 

),(),,1,( 2 trghkTMz  , for all 0,0  tar  (2.5) 

,)(),,(),0,1,( hzhallforknowntzFbTMr  0,0  tab  (2.6) 

The most general expression for these conditions can be given by 

  svv fkfkskkfM
 ˆ),,,(  

where the prime (^) denotes differentiation with respect to .  kandk  are the radiation constant on the upper and 

lower surface of thin circular plate respectively. 

The differential equation governing the displacement function U(r,z,t)  as [2] is  
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with U = 0 at r = a                                         (2.8) 

where   and ta  are the Poisson ratio and the linear coefficient of thermal expansion of the material of the circular plate. 

The stress functions and  andrr  as [2] are given by 
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where   is the Lame’s constant, while each of the stress functions zzrz  ,  and z are zero within the plate 

in the state of stress. 

Equations (2.1) to (2.10) constitute the mathematical formulation of the problem under consideration. 

 

Figure shows the geometry of the problem 

3.  SOLUTION OF THE PROBLEM 

Applying Finite Hankel transform as [4]  to the equations (2.5), (2.6), (2.8), (2.9) and using equations (2.7), one obtains  
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where  

0)0,0,1,( * TMt  (3.2) 

),(),,1,( 1
* tfhkTM nz   (3.3) 

),(),,1,( 2
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where the symbol (*) means the function in the transformed domain the nucleus for the finite Hankel transform defined by 
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Further applying finite Marchi-Fasulo transform as [1] to the equations (3.1), (3.2) and using (3.3) and (3.4), one obtains 
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0)0,0,1,( * TM t  (3.7) 

where
*T is transformed function of T and m is the transformed parameter. The symbol (-) means a function in the 

transformed domain and the nucleus is given by the orthogonal function in the internal hzh   as 
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The eigen values m  are the positive roots of the characteristic equation  
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After performing calculations on equation (3.6), the reduction is made to linear first order differential equation  
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The transformed temperature solution of the differential equation (3.7) is  
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Applying the inversion theorems of transformation rules defined in (1.1.  ) and (1.1.), one obtains 
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Equations (3.10) and (3.11) represents the temperature distribution and unknown temperature gradient of a circular plate 
when there are radiation type boundary conditions. 
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4. DETERMINATION OF THERMOELASTIC DISPLACEMENT 

Substituting value of temperature distribution ),,( tzrT from equation (3.10) in equation (2.10), one obtains the 

thermoelastic displacement function ),,( tzrU as  
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5. DETERMINATION OF STRESS FUNCTION 

Using equation (4.1) in equations (2.12) and (2.13), one obtains 
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6. SPECIAL CASE AND NUMERICAL RESULTS 

Set 
ht eertrf )1(),(  , ,)1(),( ht eertrg  )()()(),,( 000 ttzzrrtzr    (6.1) 

Modulus of Elasticity, E (dynes/cm2) 6.9  1011 

Shear modulus, G (dynes/cm2) 2.7  1011 

Poisson ratio,  0.281 

Thermal expansion coefficient, t(cm/cm-0C) 25.5  10-6 

Thermal diffusivity,  (cm2/sec) 0.86 

Thermal conductivity,  (cal-cm/0C/sec/ cm2) 0.48 

Outer radius, a (cm) 10 

Inner radius, b (cm) 9 

Thickness, h (cm) 1 

 

 

 
Figure (1) : Graph of r vs T(r,z,t) 

 
Figure (2) : Graph of r vs ur 
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Figure (3) : Graph of r rr 

 

7. STATEMENT OF THE PROBLEM-II 

Consider a thick circular plate. The material of the plate is isotropic, homogenous and all properties are assumed to be 
constant. Heat conduction with internal heat source and the prescribed boundary conditions of the radiation type is 
considered. Equation for heat conduction in cylindrical coordinate as [3] is:  
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where k  is the thermal diffusivity of the material of the cylinder (which is assumed to be constant), subject to the initial 
and boundary conditions  

0)0,0,1,( TM t , for all  ar 0  , hzh   (7.2) 

),(),0,1,( tzGaTMr  , (unknown) for all  hzh   , 0t  (7.3) 

),(),,1,( 1 trfhkTM z    ar 0  , 0t  (7.4) 

),(),,1,( 2 trghkTM z  ,  for all    ar 0  , 0t  (7.5) 

),(),0,1,( tzFbTMr  , (known) for all   , ab 0  0t  (7.6) 

The most general expression for these conditions can be given by 
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where the prime ( ^ ) denotes differentiation with respect to  ; a0 ;  k  and k  are radiation constants on the 

upper and lower surfaces of the plate respectively.  

The Navier’s equations without the body forces for axisymmetric two-dimensional thermoelastic problem can be expressed 
as [2] 
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where ru  and zu  are the displacement components in the radial and axial directions, respectively and the dilatation e as 
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The displacement function in the cylindrical coordinate system are represented by the Goodier’s thermoelastic 

displacement potential ),,( tzr  as [3] and Love’s function L as [8] 
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in which Goodier’s thermoelastic potential as [3] must satisfy the equation 
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and the Love’s function L as [8] must satisfy the equation 
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Figure shows the geometry of the problem 
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where G  and υ  are the shear modulus and Poisson’s ratio respectively. 

Equations (7.1) to (7.17) constitute the mathematical formulation of the problem under consideration. 

8. SOLUTION OF THE PROBLEM-II 

Transient Heat Conduction Analysis: 

Applying finite Hankel transform and Marchi-Fasulo transform as [4] , [1] to the equation (7.6) under the condition (7.8)-
(7.10), the following reduction is made 
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The eigen values n are the positive roots of the characteristic equation ,0)(0 bJ n  

Then, the transformed temperature solution of equation (5.3.1) is given by 
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Accomplishing the inversion theorems of transformation rules on equation (8.2), the temperature solution and unknown 
temperature gradient respectively are shown as follows: 
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9. THERMOELASTIC DISPLACEMENT 

Referring to the fundamental equation (7.1) and its solution (8.3) for the heat conduction problem, the solution for the 
displacement function is represented by the Goodier’s thermoelastic displacement potential   governed by equation 

(7.12) as 
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Similarly, the solution for Love’s function L as [8] are assumed so as to satisfy the governed condition of equation (7.13) as 
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In this manner, two displacement functions in the cylindrical coordinate system  and L are fully formulated.  

Now, in order to obtain the displacement components, we substitute the values of thermoelastic displacement potential   

and Love’s function L in equations (7.10) and (7.11), one obtains 
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Thus, making use of the two displacement component, the dilation is established as              
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Then, the stress components can be evaluated by substituting the values of thermoelastic displacement potential   from 

equation (9.1) and Love’s function L from equation (9.2) in equations (7.14) to (7.17),  one obtains 
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10. SPECIAL CASE 

Set 
ht eertrf )1(),(  , ,)1(),( ht eertrg  )()()(),,( 000 ttzzrrtzr    (10.1) 

11. NUMERICAL RESULTS, DISCUSSION AND REMARKS 

To interpret the numerical computations, we consider material properties of Aluminum metal, which can be commonly 
used in both, wrought and cast forms. The low density of aluminum results in its extensive use in the aerospace industry, 
and in other transportation fields. Its resistance to corrosion leads to its use in food and chemical handling (cookware, 
pressure vessels, etc.) and to architectural uses. 

Modulus of Elasticity, E (dynes/cm2) 6.9  1011 

Shear modulus, G (dynes/cm2) 2.7  1011 

Poisson ratio,  0.281 

Thermal expansion coefficient, t(cm/cm-0C) 25.5  10-6 

Thermal diffusivity,  (cm2/sec) 0.86 

Thermal conductivity,  (cal-cm/0C/sec/ cm2) 0.48 

Outer radius, a (cm) 10 

Inner radius, b (cm) 9 

Thickness, h (cm) 1.5 

Table 1: Material properties and parameters used in this study. 
Property values are nominal. 

In the foregoing analysis are performed by setting the radiation coefficients constants, 21 1 kk  , so as to obtain 

considerable mathematical simplicities. The derived numerical results from equation (8.3) to (9.9) have been illustrated 
graphically. 
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Graph 4: Temperature distribution vs radius 

 

Graph 5: Radial stress distribution vs radius 

 

Graph 6: Tangential stress distribution vs radius 

 

Graph 7: Axial stress distribution vs radius 

 

Graph 8: Shear stress distribution vs radius 

 

Graph 9: Displacement component vs radius 

 

Graph 10: Displacement component vs radius 
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12. CONCLUSION 

In both the problems, the temperature distributions, unknown temperature gradient, displacement and stress functions on 

ar   of a circular plate have been investigated where internal heat source function is )()()( 000 ttzzrr   . 

The results have been obtained in terms of Bessel’s function in the form of infinite series. The expressions that are obtained 
can be applied to the design of useful structures or machines in engineering applications. Any particular case of special 
interest can be assigned to the parameters and functions in the equations. 

REFERENCES  

[1]  E. Marchi and A. Fasulo, Heat conduction in sector of hollow cylinder with radiation, Atti, della Acc. Sci. 
di. Torino, 1, 373-382,1967 

[2]  W. Nowacki, The state of stress in thick circular plate due to temperature field. Ball. Sci. Acad. Polon Sci. 
Tech. 5 , 227,1957  

[3]  N. Noda, R. B. Hetnarski and Y. Tanigawa, Thermal stresses, Second Edition, Taylor and Francis, New 
York , 260, 2003 

[4]  M. N. Ozisik, Boundary value problem of Heat conductions, International Text book company, Scranton, 
Pennsylvania , 135, 1986 

[5]  S. K. Roy Choudhary, A note on quasi-static thermal deflection of a thin clamped circular plate due to 
ramp-type heating on a Concentric circular region of the upper face, J. of the Franklin. Institute, 206 , 213-
219, 1973  

[6]  P.C. Wankhede, On the quasi-static thermal stresses in a circular plate, Indian J. Pure and Appl. Maths., 
13, No. 11, 1273-1277, 1982  

[7]  N.W. Khobragade, Thermoelastic analysis of a thick hollow cylinder with radiation conditions, IJEIT. 
Vol.3, Issue 4 , pp. 380-387, 2013 

[8]  A.E.H. Love, A treatise on the mathematical theory of elasticity , Dover publication, Inc, New York, 1944.  
[9]     Pallavi Meshram and N. W.  Khobragade, Steady state thermoelastic problems of semi-infinite hollow cylinder 

on outer curved surface: direct problem, IJIRS, Vol. 8, issue IV, pp. 43-60, 2018 
 
 

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:6011


