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Abstract

This paper is concerned with inverse transient thermoelastic problem , in which we need to determine the
temperature distribution, unknown temperature gradient, displacement function and thermal stresses of a finite
length hollow circular cylinder with internal heat source . We apply integral transform techniques and obtained
the solution of the problem. Numerical calculations are carried out for a particular case and results are depicted
graphically.
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1. INTRODUCTION

Sierakowski and Sun [2] have studied the direct problems of an exact solution to the elastic deformation of
finite length hollow cylinder. Kamdi, et al. [3] have studied transient thermoelastic problem for a circular solid
cylinder with radiation. Walde et al. [4] have discussed transient thermoelastic problem of a finite length hollow
cylinder. Kulkarni et al. [5] have derived thermal stresses of a finite length hollow cylinder. Warbhe et al. [6]
discussed numerical study of transient thermoelastic problem of a finite length hollow cylinder. Lamba et al.
[7] studied analysis of coupled thermal stresses in a axisymmetric hollow cylinder. Hiranwar et al. [8] studied
thermoelastic problem of a cylinder with internal heat sources. Bagde et al. [9] discussed heat conduction
problem for a finite elliptic cylinder.

Khobragade et al. [10] have investigated thermal deflection of a finite length hollow cylinder due to heat
generation. Khobragade [11] has studied thermoelastic analysis of a thick hollow cylinder with radiation
conditions. Ghume et al. [12] have derived interior thermo elastic solution of a hollow cylinder. Chauthale et
al. [13] have studied thermal stress analysis of a thick hollow cylinder. Singru et al. [14] have developed
integral transform methods for inverse problem of heat conduction with known boundary of semi-infinite
hollow cylinder and its stresses. Fule et al. [15] have derived thermal stresses of semi-infinite hollow cylinder
with internal heat source. Meshram et al. [15] have studied steady state thermoelastic problems of semi-infinite
hollow cylinder on outer curved surface.

In this paper, an attempt has been made to solve two inverse problems of thermoelasticity. In both the problems,
an attempt has been made to determine the temperature distribution, unknown temperature gradient,
displacement function and thermal stresses on outer curved surface of a finite length hollow cylinder.

2. STATEMENT OF THE PROBLEM

Consider a hollow cylinder of length 2h in which sources are generated according to linear function of temperature. The
material is isotropic, homogeneous and all properties are assumed to be constant. The equation for heat conduction as [18]:

kli[rﬁ—Tj+62T f 2z =2L eh)
ror\_ or) oz’ A= ot '

where £ is the thermal diffusivity of the material of the cylinder (which is assumed to be constant).

Subject to the initial and boundary condition

M.(T,1,0,0)=0 (2.2)
M (T,1,k,a)=0foral ~2<z<h, K t>0 (2.3)
M (T, 1,ky,17)=0 (known) forall A< <b -h<z<h >0 2.3)
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M, (T,1,0,b)=G(z,t) forall —h<z<h, t>0 (2.4)
M (T, 1, ks, h)y=f (r,0) 2.5)
M (T, Lky,—h)=g(r,t),forall a<r<b, t>0 (2.6)

The most general expression for these conditions can be given by
M, (f,k, k,$)=(kf +kf),

where the prime (A) denotes differentiation with respect to v . k and k are radiation constants on the upper and lower

surface of cylinder respectively.

The radiation and axial displacement U and W satisfy the uncoupled thermoelastic equation as [2] are

_ 6@ 1+v \oT
VU -—= + 1-2v) ' = =2 = 2.
(-2v) or (1 - 2vj or @7
8e 1+v oT
VAW +(1+2v)" a, —
( ) 82 (l—vj oz (28)
where
87U + g + 81 is the volume dilatation,
or r oz
o¢
U= 2.9
or 29
o¢
W =— 2.10
o (2.10)
The thermoelastic displacement function @(7, z,#) as [1] is governed by the Poisson’s equation
1+v
Vig= a,T @2.11)
-y
withp = 0 at ¥ =a and r=>. (2.12)
& 10 o
2
where V=

S e T
o’ ror o0z’
Vand @ ; are poisons ratio and the linear coefficient of thermal expansion of the material of the cylinder respectively.
The stress functions are given by

7,.(a,z,t)=0, 7,,(b, z,t) =0, 7,,(r,0,1) =0 (2.13)
o.(a,z,t)=p,, 0.(b,z,t)=—p, o_.(r,0,t) =0 (2.14)

where p; and D) are the surface pressure assumed to be uniform over the boundaries of the cylinder.

The stress functions are expressed in terms of displacement components by the relations as [1]:

o, —(/1+2G)6—U+ /’L(U aW} (2.15)

r oz
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GZ:(/1+2G)a—W+/1 a—U+g (2.16)
0z or r
U ow oU
__{ow  au
rz ~ or Oz (2.18)
where | = 2Gv is the Lame’s constant, G is the shear modulus and U and W are the displacement components.

1-2v

Equations (2.1) to (2.18) constitute the mathematical formulation of the problem under consideration.

FA

'y

2h

Figure shows the geometry of the problem

3. SOLUTION OF THE PROBLEM

Applying finite Marchi-Zgrablich transform to the equations (2.5), (2.6) and (2.9) and using equation (2.7) and (2.8), one

obtains

ko*T n,z,t . 0T (n,zt
(20, T2

k —,u,f]_"(n,z,t)+
M,(T,1,0,0)=0

Mz(fa 17 k?,a h) = f* (nst)

Mz(fa 19 k49 _h) = g*(n:t)

where T is the transformed function of 7' and 72 is the transformed parameter.

The eigen values £/, are the positive roots of the characteristic equation

Jo(ky, pa) Yy (ky, pb) — J o (ky, pb) Y, (ky, pa) =0

Further applying finite Marchi-Fasulo transform to the equation (3.1) and using (3.3) and (3.4), one obtains
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A A +y =— (3.5)

(WS _B,(-heg —*_dT (n,m,t)
dt

k{—(ﬂﬁ +&E)T (n,m, t){

M(T",1,0,0)=0 (3.6)

where T is the transformed function of T and 71 is the transformed parameter. The symbol (*) means a function in
the transform domain and the nucleus is given by the orthogonal functions in the interval —h<z<has

P (z)=0,, cos(&,z) =W, sin(é, z)

In which

0, =Sulks +k,) cos(G, 1)
W, =2cos(s,h) + (k; —k,) ¢, sin(g,, h)

(28,1
2

m

j Pi(2) dz = HQp + W, ] +sin=—2=2[0,* —17)]

The eigen values 5 m are the positive roots of the characteristic equation
[k3a cos(ah) + sin(ah)][cos(ah) + kqasin(ah)]

=k,acos(ah) —sin(ah)][cos(ah) — k,a sin(ah)]

After performing some calculations on the equation (3.5), the reduction is made to linear first order differential equation as

dr’ P(Wf" B(hg" | —
7 +h(py +ENT {[ A K }z} (3.6)

The transformed temperature solution is

" Q(m,n) 2 2
T =—— > J1- —k
where
P.(hf" P,(-hg" | —=
Q(m,n):{ ’”(k)f - ”’(k U :|+;(} (3.8)
3 4

Applying the inversion of transformation rules, the temperature solution and unknown temperature gradient are obtained as

T(r,z,r)=icii ﬁ(("; fﬂ)) (1 exp (h(E2 + 4NIP(2) % S, (ks Ky 11,7) 69)
n=1 n m=1"Yy,

Q > Hn
Gzt) = Z; 3y k(é’" f -k + IR Sk Koo ) 10

4. DETERMINATION OF THERMOELASTIC DISPLACEMENT

Substituting value of temperature distribution 7'(r,z,¢) from equation (3.9) in equation (2.11) one obtains the thermoelastic
displacement function ¢(r, z,¢) as

1 =51 S QE,,u,
$(r.z z)——[f:ja,Zc—”{Z on )

n=1 m=1 (gm +1un) ﬂ’mk
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X [1—exp(—k(& + a1 P (2)] XSo(kys kas p1,7) ] .1

Substituting the value of @(r, z,¢) from equation (4.1) in equations (2.9) and (2.10) one obtains

1+v = = QE,, u1,)
U = m _ p g2 2
( \J Z‘; mZ: é: + ,Lln )2/1 k X [1 eXP( k(é:m—'—;un)t)]Pm(Z)

X:unS(; (kla k2a ,Llnl") (4.2)

W:—(l”jatiiiw x [1—exp(=k(E2 + 12)0)]

L=v) = C i (Gt ) Ak
x(_gm) [Qm Sin(gmz) + Wm COS(fmZ)] XSO (kl N kz, /Jnl") 4.3)

Making use of two displacement components, the volume dilatation is established as

=) e henkE R )
n= n m=1 ﬂ

" S0k by, g, 7
X |:/U3S0(k1’k25/unr) +M— gnzftSO(kbkb/unr):l (4.4)

5. DETERMINATION OF STRESS FUNCTIONS

The stress components can be evaluated by substituting the values of thermoelastic displacement from equations (4.2) and
(4.3) in equations (2.15) to (2.18), one obtains

{1+vj 5L Z;i(im,)ﬂ; -esen@ + a0

H,So (ks kg p,1)
r

X|:(/1+2G) /’lnS(’),(kl’kZ’ /’lnr)_’—/l( _gnzSO(kl’kZ’/’lnr)ji| (51)

(V) S L Qi) o k0 p (e
0. (1 j Y o ISRk 01 B

(5.2)

Sk, k
X|:(_ﬂ’+2G) érf;SO(klak27 :unr)+ﬂ[,un2S(,)l(k17k27:unr)+/u” 0( 1 Zﬂ/unr)]:|

r

1+v wLm Q(fma,un) 1— —k 2 2 P
T (l—vj A T iy PR O ()

x [m +26) ”"S°("l;"2’ Al) (22, by g, )+ 4280 s K um} 63
1+v) &1 QE,,u) 2, 2

=2G @S — Mo M) 1y exp(k(E2 + i)
(1 vj L @ ey gk PG T )]

x[(=5,) (@, sIn(,,2) + W, cos(G, ) x 4,8y (ky, ks, 44,7)] (54)
6. SPECIAL CASE AND NUMERICAL RESULTS

Set f(r,t)=re"(1-e™), g(r,t)y=re" (=€), y(r,z,0) = 5(r—1,)6(z —2y)5(t — 1) 6.1
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Modulus of Elasticity, £ (dynes/cm®) 6.9 x 10"
Shear modulus, G (dynes/cmz) 2.7 x 10"
Poisson ratio, v 0.281
Thermal expansion coefficient, a(cm/cm-"C) 255 % 10°¢
Thermal diffusivity, & (cm?/sec) 0.86
Thermal conductivity, 4 0.48
(cal-cm/°C/sec/ cm?)
Inner radius, a (cm) 8
Interior radius, ¢ (cm) 9
Outer radius, b (cm) 10
Height, 4 (cm) 30
8T 2507
t=1
2004 “o1=075
=05
=025

= 1: e =

g 4 g

= 100 ,ﬁéﬁ" s
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Figure(3). Graph of thermoelastic displacement function
vs radius
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Figure(2). Graph of displacement component vs radius ] ] ]
Figure(4). Graph of radial stress vs radius
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Figure(5). Graph of axial stress vs radius Figure(6). Graph of tangential stress vs radius

7. STATEMENT OF THE PROBLEM-II

Consider a hollow cylinder occupying the space D = {(x,y,z) € R :a S()c2 +y2)1/2 <b,—-h<z<h}, where

r= (x2 + yz)l/ 2 . The material of the hollow cylinder is isotropic, homogenous and all properties are assumed to be

constant. Heat conduction with internal heat source and the prescribed boundary conditions of the radiation type, where the
stresses are required to be determined. The equation for heat conduction in cylindrical coordinates as [18] is:

2
K la[raTj+ 0T, x(r,z,t) = or (7.1)
ror\ or ot

0z’

where K is the thermal diffusivity of the material of the hollow cylinder (which is assumed to be constant), subject to
the initial and boundary conditions

M,(T,1, 0,0)=To’forall a<r<b,—h<z<h (7.2)
M (T 1, k,,a)=F (z,t),foral —h<z<h >0 (13)
M,(T.1, ky,¢) = Fy(2,1) (known) forall —h<z<h >0 (7.4)
M, (T.1,0,b) = G(z.1) (unknown) for all —h<z<h _t>0 (1.5)
M_(T,\, ks, h)=f(r,t) forall a<r<b, t>0 76
M_(T,), ky,—h)= g(r,t)’for al a<r<b, t>0 (1.7)

The most general expression for these conditions can be given by

Mg(f k. Je,8)=(k f+k [ gsg

where the prime () denotes differentiation with respect to & ; T, is the reference temperature; k and k are radiation
coefficients respectively.

The Navier’s equations without the body forces for axisymmetric two-dimensional thermoelastic problem can be expressed
as [2]

r 1-2vor 1-2v or
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1 de 2(1+v)
Vi — e a2l =0
P 122w oz 1-20 ez (79)

where Uy and U 7 are the displacement components in the radial and axial directions, respectively and the dilatation e
as

o ou, LU +8uz
or r 0z (.10

The displacement function in the cylindrical coordinate system are represented by the Goodier’s thermoelastic

displacement potential ¢(V ,Z,t ) and Love’s function L as [18]

op L
>, =—— , (7.11)
or Oroz
o , 0L
u =—+2(1-0v)V°'L——— 7.12
c=5, A1) =, (7.12)
in which Goodier’s thermoelastic potential must satisfy the equation [18]
1+ov
Vig= [ jazT (7.13)
-0
and the Love’s function L must satisfy theequation
VX(V’L)=0 (7.14)
where
2
y2_lo(, 0}, 0"
ror\ or) pz2
The component of the stresses are represented by the use of the potential ¢ and Love’s function L as [18]
2 2
c,=2G 0 ? Vi |+ 0 VZL—@ (7.15)
or & or?
—ZG{[I % _y ¢j ( L_”’Lj} (1.16)
ror oz ror
I 2, 0L
o,.=2G -V 22—V L—— 717
- {[ e g |+ ( v) Y (7.17)
0’ g 82L
o.=2G ¢ (1 V)V - (7.18)
8r82 P

WhereGandv are the shear modulus and Poisson’s ratio respectively. The boundary condition on the traction free surface
stress functions are

O-ZZ|Z:ih = O-FZ|Z=ih:0 (7.19)

Equations (7.1) to (7.19) constitute the mathematical formulation of the problem under consideration.
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Figure Shows the geometry of the problem
8. SOLUTION OF THE PROBLEM
Transient Heat Conduction Analysis:

Applying finite Marchi-Zgrablich transform to the equations (7.3) to (7.5) and (7.7), and taking into account equations (7.8)
and (7.9), one obtains

/{— 1T (n,z,t)+6271§271;z’t)}+;((n,z,t)=m;t’z’t) @.1)
M (T ,1,0,0)=T, (8.2)
M.(T\\L ks, B)= f(n), (83)
M (T.1, ky,—h) = g(n,1) (8.4)

where 7 is the transformed function of T and 7 is the transform parameter, and £{;, are the positive roots of the
characteristic equation

Jolky, pa) Yo(ky, prc) = Jo (ky, prc) Yy (ky, a) =0
and F|, F, are assumed to be zero.

Further applying finite Marchi-Fasulo transform to the equations (8.1), (8.2)and using equations (8.3) and (8.4), one obtains

%

dT

4 x(A, )T =F(n, m) (8.5)
dt :
where
An,m = ,u/% + al%’l
and
Fn,m) = {Pm (0] _P.(-hg +7}
ks k,

Where 7 denotes Marchi-Fasulo integral transform of 7 and m is the transform parameter.
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The general solution of equation (8.5) is given by

—=x _ F(m,m) |7 F(n,m) .
T (n,m,t)= K(An,m)J{TO K(An,m)}exp( K(A, )0 (8.6)

Applying inversion theorems of transformation rules to the equation (8.6), one obtain the expression for temperature
distribution and unknown temperature gradient as

T(r,z,0) = Z {Z (G + Ty son,m)exp(—r«(An,m)t)]} XB, (2) Sy (k1. 4,7) (8.7)
n=l n m=l m
0 o0 1
G(Z t) ch {Zi pnm_i_(]z) Son,m)exp(_’((An,m)t)]} ><I:’m(Z)SO(kl’kZ’/unb) (88)
n m=l""m
where
F(n,m
0, =),
KNy m)

9. THERMOELASTIC SOLUTION

Referring to the fundamental equation (7.1) and its solution (8.7) for the heat conduction problem, the solution for the
displacement function are represented by the Goodier’s thermoelastic displacement potential ¢ governed by equation

(7.13) as

m=l ﬂ?ﬂ (A'VI m)

Similarly, the solution for Love’s function L are assumed so as to satisfy the governed condition of equation (7.14) as

n=l

#r.z.0) {t‘lja D 1 {Z [0+ (T *—son,m>eXpe«(An,m)r>]Pm<z)} x Syl ey, 1,7) ©0.1)

Lz {%’jja,xZ 1 {Z T Anm)[so,, ey son,m)expez«/\n,m)n]}

n=1 ” m=1
X [Bnm Sinh(/,an) + Can COSh(/unZ)]X SO (kl akl > /,lnl") (92)

Using equations (9.1) and (9.2) in equations (7.11) and (7.12), one obtains

) (I-I-U) Z/un Z [(@nm+(% (@n,m)expeK(An,m)t)]
> o

”ml’”

% [{ Py (2)~[(Bpmttn + Crm ) cosh(a2) + Cpymzsinh(u2) } | X So(ky, kg, 44,1) 9.3)

1+0) 1 )X =
u, _[:)]at Z {Z//im(/\nm) [gonm ( _pn,m)expek([\n,m)t)]}

n=l m=l
% {[~a,(Q, sin(a,2) + ¥, cos(@, 2)) ~ 12 (~1+20)(B,, sinh(u,2) + C,,, zcosh(x, 2))]

—2(=1+20) Cyypy sinh(u,2) 1 1 So (k1. k2, p1g7)
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+41, 21-0)) [B,,, sinh(,2) +C,, zcosh(u, 2)]x[u, Sy(k,.ky. 11,7) +

r

S(,)(kln kz, ﬂnr)}

9.4)

Thus, making use of the two displacement components, the dilatation can be obtained. Then, the stress components can be
evaluated by substituting the values of thermoelastic displacement potential ¢ [18] from equation (9.1) and Love’s

function L from equation (9.2) in equations (7.15) to (7.18), one obtains

1+u o | -
J th_ {zm{gon,m+(7—2)_tgon,m)exp(_k(/\n,m)t):|}

n=l N mlm

_ai So(k],k2,,l,lnl")]

So(k, k,y,u,
x{~P (2) o (ky : w,r)

+uy =18k, ky, 1,7 12, (B, cosh(u,2)+C,, (zsinh(x,z)+ cosh( u,z))
+u, 0B, cosh z) 1y, +C,, (zsinh(u,z) +cosh{,z))]

So(kky o r
X[ 0( 1 ’,-2 : ) ﬂnS (klakZaﬂnr)]+2U nm /un COSh(/u”lZ)So(kl’kz”u”r)]} ©-5)
1+v zw 1 zw T
69'9 zzG(EjatX n=l Fn{w 1 (Anm) son,m-l—(% _pﬂ,m)expeK(A”’m)t)]

x{= P (2) 1S (ky Koy, 1) — ay So (e 11,7

A CRLY Yk kyy o r) x[(, B, +C, Yeosh(u z)+u C, zsinh(u 2)]
r

+uv(u, B, +C, Yeosh(u,z)+u,C, zsinh(u,z)]

X [S(')'(kla kz: ,unr) + So(kla kz: ,unr)] +20Cnm:u3 COSh(unZ)SO(klakb:unr)]} (9-6)

o, ZZG[E—ZJCQ XZCL{Z (Anm)[gonm ( To _pn,m)exp(_K(An,m )t)]}

n=l ”mlm

S()(klakZMLlnr)

r

X{_/uan(Z)[:Llnsg(klakZaﬂnr)+ ]

+ u? [B,, cosh(s,z) +C,, zsinh(4,2)](2 - v)

X[ﬂn S(’)’(kl’kZ’/’lnr)+ r_l SO(kl’k2’/’lnr)]+ (I_U)yn SO(kl’k2’/’lnr)

S k’ b
+11,C,, coshu,)[2-v) [, Sa'(/q,kz,u,,r)+°(l’f“"”)] + (1= 0) 12 So(ky ks ,)] 0)

{Z T )[sonm+(To son,m>exp<—z<(An,m)r)]}
m=1""m nm

1+v > 1
=2G|— |la,x » —
e

n=l N

% { [ = 1,0, (O, SIN(@,,2) + W, c08(@,,2)) I So (i Ky, 1,7)
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(B, sinh(1,2) + C,p, zeosh( p1,2) 12 [opt, + L=20) = 20u2C,,, sinb( ,2)] Sy (ky Ky p1,7)
r
S (k. k,,
+(=0)[B,, sinh(z,2) + C,, zcosh(u, )X} Sk, Ky ptyr) — 21Kl gy ©08)
r

10. DETERMINATION OF UNKNOWN ARBITRARY FUNCTION B,,,and C,,,
Applying boundary conditions (7.7)~(7.11) to the equations (9.1) and (9.2) one obtains

:Pm(h))_([hCOSh(unh)}_/ _Z] —Aay jﬂn Sé(kka’lunr)g[(z_U))_(+(1_U)/ln SO(klﬁkZ‘uunr)]
" 1@0)X +(1=0) 4, Sk Ky 4, (s, ) coshiu, ) [hcoshiu, b)Y ~Z] - g sinhq, b)Y}

_b (WX [sinhg, WY]=a,, f 1, So (ki ks, 12,7) cOshiy, D[R =) X +(1=0) 1, Sy ki Ky, 11,7)]
[(2 - U))?_I' (1 - U) Hy SO (kl ’kZ ’/unr)] {@l,un)COSthnh) [hCOSthnh)? _;] —ésmh%h)?]}

SO(klakza,unr)

r

(10.1)

C

nm

(10.2)

Where X = So(kyky,p,r)+

- Stk ke, 41,7
7 =i, +(1-v) et )

. So (ks ks 7
+(1—u)(u3so(k1,kz,unr)—wj

f =W, cos(a,h)+ 0, sin(a,h)

= cosh( u,h)+ (u,h)sinh( p,h)

N

= 2vpy sinh( g1, h) g (ky, ey, 11,7

11. SPECIAL CASE

—(h+t), 2(r,z,t) = 8(r—1)0(z — 2)S(t — 1) (11.1)

12. NUMERICAL RESULTS, DISCUSSION AND REMARKS

Set f(r,)=re™ g(r,t)=re

To interpret the numerical computations, we consider material properties of Aluminum metal, which can be commonly
used in both, wrought and cast forms. The low density of aluminum results in its extensive use in the aerospace industry,
and in other transportation fields. Its resistance to corrosion leads to its use in food and chemical handling (cookware,
pressure vessels, etc.) and to architectural uses.

Modulus of Elasticity, E (dynes/cm?) 6.9 x 10!
Shear modulus, G (dynes/cm2) 2.7 x 10"
Poisson ratio, v 0.281
Thermal expansion coefficient, a(cm/cm-"C) 255x10°
Thermal diffusivity, & (cm¥/sec) 0.86
Thermal conductivity, 4 0.48
(cal-em/’C/sec/ cm?)

Inner radius, @ (cm) 7
Interior radius, ¢ (cm) 9
Outer radius, b (cm) 10
Height, 4 (cm) 30

Table 1: Material properties and parameters used in this study.
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The foregoing analysis are performed by setting the radiation coefficients constants, k; = 0.5(i =1,2) and
k; =1(i = 3,4), so as to obtain considerable mathematical simplicities.

The derived numerical results from equation (8.7) to (9.8) has been illustrated graphically with internal heat source with

available additional sectional heat on its flat surface.

7507

T (rz,t)

r a 04 i& 1.2 16 20
Figure (7). Temperature distribution with internal heat r
source
750 Figure (10). Axial stress distribution for varying along -
axis with internal heat source
E
o
M
e]
Q + 1
(i} 0.4 0.8 1.2 1.6 20
r
Figure (8). Radial stress distribution with internal heat i ; , ; A ;
source 0 04 08 12 16 20
750 7 r
=078 . o .
= %:E}ﬁ Figure (11). Shear stress d1str.1but10n for varying along r-
axis
&

150 4

Figure (9). Tangential stress distribution with internal
heat source
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CONCLUSION

In this study, we treated the two-dimensional thermoelastic problem of a hollow cylinder in which sources are
x(r,z,t) =0(r—ry)0(z—2.4)0(t—1t,). We successfully established and obtained the temperature distribution,
unknown temperature gradient, displacements and stress functions of the cylinder when the boundary conditions are
known. The integral transform techniques are used to obtain the numerical results.The results that are obtainrd can be
applied to the design of useful structures or machines in engineering applications. Any particular case of special interest
can be derived by assigning suitable values to the parameters and functions in the applications
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