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Abstract   

This paper is concerned with inverse transient thermoelastic problem , in which we need to determine the 
temperature distribution, unknown temperature gradient, displacement function and thermal stresses of a finite 
length hollow circular cylinder with internal heat source . We apply integral transform techniques and obtained 
the solution of the problem. Numerical calculations are carried out for a particular case and results are depicted 
graphically.  
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1. INTRODUCTION 

Sierakowski and Sun [2] have studied the direct problems of an exact solution to the elastic deformation of 
finite length hollow cylinder. Kamdi, et al. [3] have studied transient thermoelastic problem for a circular solid 
cylinder with radiation.  Walde et al. [4] have discussed transient thermoelastic problem of a finite length hollow 
cylinder. Kulkarni et al. [5] have derived thermal stresses of a finite length hollow cylinder.  Warbhe et al. [6] 
discussed numerical study of transient thermoelastic problem of a finite length hollow cylinder. Lamba et al. 
[7] studied analysis of coupled thermal stresses in a axisymmetric hollow cylinder. Hiranwar et al. [8] studied 
thermoelastic problem of a cylinder with internal heat sources. Bagde et al. [9] discussed heat conduction 
problem for a finite elliptic cylinder. 
 
Khobragade et al. [10] have investigated thermal deflection of a finite length hollow cylinder due to heat 
generation. Khobragade [11] has studied thermoelastic analysis of a thick hollow cylinder with radiation 
conditions. Ghume et al. [12] have derived interior thermo elastic solution of a hollow cylinder. Chauthale et 
al. [13] have studied thermal stress analysis of a thick hollow cylinder. Singru et al. [14] have developed 
integral transform methods for inverse problem of heat conduction with known boundary of semi-infinite 
hollow cylinder and its stresses. Fule et al. [15]  have derived thermal stresses of semi-infinite hollow cylinder 
with internal heat source. Meshram et al. [15] have studied steady state thermoelastic problems of semi-infinite 
hollow cylinder on outer curved surface. 
 
In this paper, an attempt has been made to solve two inverse problems of thermoelasticity. In both the problems, 

an attempt has been made to determine the temperature distribution, unknown temperature gradient, 
displacement function  and thermal stresses on outer curved surface of a finite length hollow cylinder.  

 

2. STATEMENT OF THE PROBLEM 

Consider a hollow cylinder of length 2h in which sources are generated according to linear function of temperature. The 
material is isotropic, homogeneous and all properties are assumed to be constant. The equation for heat conduction as [18]: 

t

T
tzr

z

T

r

T
r

rr
k

































),,(

1
2

2

  (2.1) 

where k  is the thermal diffusivity of the material of the cylinder (which is assumed to be constant).  

Subject to the initial and boundary condition  

0)0,0,1,( TMt  (2.2) 

0),,1,( 1 akTM r for all hzh  ,  0t  (2.3) 

0),,1,( 2 kTM r  (known) for all ba  hzh  ,  0t  (2.3) 
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),(),0,1,( tzGbTM r  for all hzh  ,  0t  (2.4) 

),(),,1,( 3 trfhkTMz   (2.5) 

),(),,1,( 4 trghkTMz  , for all bra  ,  0t  (2.6) 

The most general expression for these conditions can be given by  

svv fkfkskkfM


 )ˆ(),,,(  

where the prime )(  denotes differentiation with respect to .v  k and k  are radiation constants on the upper and lower 

surface of cylinder respectively.  

The radiation and axial displacement U  and W  satisfy the uncoupled thermoelastic equation as [2] are   
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The thermoelastic displacement function ),,( tzr  as [1] is governed by the Poisson’s equation  
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with 0  at ar   and br  .                    (2.12) 
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v  and t  are poisons ratio and the linear coefficient of thermal expansion of the material of the cylinder respectively.  

The stress functions are given by  

,0),,( tzarz ,0),,( tzbrz 0),0,( trrz  (2.13) 

1),,( ptzar  , 0),,( ptzbr  0),0,( trz  (2.14) 

where 1p  and 0p  are the surface pressure assumed to be uniform over the boundaries of the cylinder.  

The stress functions are expressed in terms of displacement components by the relations as [1]: 
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where
v

Gv

21

2


  is the Lame’s constant, G is the shear modulus and U  and W  are the displacement components.  

Equations (2.1) to (2.18) constitute the mathematical formulation of the problem under consideration.  

 

Figure shows the geometry of the problem 

3. SOLUTION OF THE PROBLEM 

Applying finite Marchi-Zgrablich transform to the equations (2.5), (2.6) and (2.9) and using equation (2.7) and (2.8), one 
obtains  
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0)0,0,1,( TMt  (3.2) 

),(),,1,( 3 tnfhkTMz
  (3.3) 

),(),,1,( 4 tnghkTM z
  (3.4) 

whereT  is the transformed function of T  and n  is the transformed parameter.  

The eigen values n  are the positive roots of the characteristic equation  

0),(),(),(),( 10202010  akYbkJbkYakJ   

Further applying finite Marchi-Fasulo transform to the equation (3.1) and using (3.3) and (3.4), one obtains  
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0)0,0,1,( * TMt  (3.6) 

where *T  is the transformed function of T  and m  is the transformed parameter. The symbol (*) means a function in 

the transform domain and the nucleus is given by the orthogonal functions in the interval hzh   as  
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The eigen values m  are the positive roots of the characteristic equation  
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After performing some calculations on the equation (3.5), the reduction is made to linear first order differential equation as  
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The transformed temperature solution is 
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Applying the inversion of transformation rules, the temperature solution and unknown temperature gradient are obtained as 
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4. DETERMINATION OF THERMOELASTIC DISPLACEMENT  

Substituting value of temperature distribution ),,( tzrT  from equation (3.9) in equation (2.11) one obtains the thermoelastic 

displacement function ),,( tzr  as  
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Substituting the value of ),,( tzr  from equation (4.1) in equations (2.9) and (2.10) one obtains  
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Making use of two displacement components, the volume dilatation is established as  
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5. DETERMINATION OF STRESS FUNCTIONS 

The stress components can be evaluated by substituting the values of thermoelastic displacement from equations (4.2) and 
(4.3) in equations (2.15) to (2.18), one obtains 
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6. SPECIAL CASE AND NUMERICAL RESULTS 

Set )1(),( th eretrf  , ),1(),( th eretrg   )()()(),,( 000 ttzzrrtzr    (6.1) 
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Modulus of Elasticity, E (dynes/cm2) 6.9  1011 

Shear modulus, G (dynes/cm2) 2.7  1011 

Poisson ratio,  0.281 

Thermal expansion coefficient, t(cm/cm-0C) 25.5  10-6 

Thermal diffusivity,  (cm2/sec) 0.86 

Thermal conductivity,  
(cal-cm/0C/sec/ cm2) 

0.48 

Inner radius, a (cm) 8 

Interior radius, c (cm) 9 

Outer radius, b (cm) 10 

Height, h (cm) 30 

 

 

Figure (1). Graph of temperature distribution vs radius 

 

Figure(2). Graph of displacement component vs radius 

 

Figure(3). Graph of thermoelastic displacement function 
vs radius 

 

Figure(4). Graph of radial stress vs radius 
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Figure(5). Graph of axial stress vs radius 
 

Figure(6). Graph of tangential stress vs radius 

 

7. STATEMENT OF THE PROBLEM-II 

Consider a hollow cylinder occupying the space :),,{( 3RzyxD  ,)( 2/122 byxa  },hzh   where 

2122 )( yxr  . The material of the hollow cylinder is isotropic, homogenous and all properties are assumed to be 

constant. Heat conduction with internal heat source and the prescribed boundary conditions of the radiation type, where the 
stresses are required to be determined. The equation for heat conduction in cylindrical coordinates as [18] is:  
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where   is the thermal diffusivity of the material of the hollow cylinder (which is assumed to be constant), subject to 
the initial and boundary conditions  
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 (7.6)

 

),(),,1,( 4 trghkTMz 
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for all  bra  ,    0t  (7.7) 

The most general expression for these conditions can be given by 

sfkfkskkfM   )ˆ(),,,(
 

where the prime ( ^ ) denotes differentiation with respect to  ; 0T  is the reference temperature; k  and k  are radiation 

coefficients respectively.  

The Navier’s equations without the body forces for axisymmetric two-dimensional thermoelastic problem can be expressed 
as [2] 
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where ru  and zu  are the displacement components in the radial and axial directions, respectively and the dilatation e 

as 

z

u

r

u

r

u
e zrr









  (7.10) 

The displacement function in the cylindrical coordinate system are represented by the Goodier’s thermoelastic 

displacement potential ),,( tzr  and Love’s function L as [18] 
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in which Goodier’s thermoelastic potential must satisfy the equation [18] 
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and the Love’s function L  must satisfy theequation 
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The component of the stresses are represented by the use of the potential   and Love’s function L  as [18] 
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(7.18) 

WhereGand are the shear modulus and Poisson’s ratio respectively. The boundary condition on the traction free surface 
stress functions are 

0



 hzrzhzzz   (7.19) 

Equations (7.1) to (7.19) constitute the mathematical formulation of the problem under consideration. 
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Figure Shows the geometry of the problem 

8. SOLUTION OF THE PROBLEM 

Transient Heat Conduction Analysis: 

Applying finite Marchi-Zgrablich transform to the equations (7.3) to (7.5) and (7.7), and taking into account equations (7.8) 
and (7.9), one obtains 
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whereT  is the transformed function of T  and n  is the transform parameter, and n  are the positive roots of the 

characteristic equation 
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and F1, F2 are assumed to be zero. 

Further applying finite Marchi-Fasulo transform to the equations (8.1), (8.2)and using equations (8.3) and (8.4), one obtains 

),()( *
,

*

mnFT
dt

Td
mn   (8.5) 

where 

22
, mnmn a   

and 




















43

)()(
),(

k

ghP

k

fhP
mnF mm

 

Where 


T denotes Marchi-Fasulo integral transform of 


T and m is the transform parameter. 
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The general solution of equation (8.5) is given by  
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Applying inversion theorems of transformation rules to the equation (8.6), one obtain the expression for temperature 
distribution and unknown temperature gradient as 
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9. THERMOELASTIC SOLUTION 

Referring to the fundamental equation (7.1) and its solution (8.7) for the heat conduction problem, the solution for the 
displacement function are represented by the Goodier’s thermoelastic displacement potential   governed by equation 

(7.13) as 
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(9.1) 

Similarly, the solution for Love’s function L are assumed so as to satisfy the governed condition of equation (7.14) as 
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 Using equations (9.1) and (9.2) in equations (7.11) and (7.12), one obtains 
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Thus, making use of the two displacement components, the dilatation can be obtained. Then, the stress components can be 
evaluated by substituting the values of thermoelastic displacement potential 

 
[18] from equation (9.1) and Love’s 

function L  from equation (9.2) in equations (7.15) to (7.18), one obtains 
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10. DETERMINATION OF UNKNOWN ARBITRARY FUNCTION Bnm and Cnm 

Applying boundary conditions (7.7)–(7.11) to the equations (9.1) and (9.2) one obtains                                        
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11. SPECIAL CASE 

Set 
)(),( thretrf  , ,),( )( thretrg  )()()(),,( 000 ttzzrrtzr      (11.1) 

12. NUMERICAL RESULTS, DISCUSSION AND REMARKS 

To interpret the numerical computations, we consider material properties of Aluminum metal, which can be commonly 
used in both, wrought and cast forms. The low density of aluminum results in its extensive use in the aerospace industry, 
and in other transportation fields. Its resistance to corrosion leads to its use in food and chemical handling (cookware, 
pressure vessels, etc.) and to architectural uses. 

Modulus of Elasticity, E (dynes/cm2) 6.9  1011 

Shear modulus, G (dynes/cm2) 2.7  1011 

Poisson ratio,  0.281 

Thermal expansion coefficient, t(cm/cm-0C) 25.5  10-6 

Thermal diffusivity,  (cm2/sec) 0.86 

Thermal conductivity,  
(cal-cm/0C/sec/ cm2) 

0.48 

Inner radius, a (cm) 7 

Interior radius, c (cm) 9 

Outer radius, b (cm) 10 

Height, h (cm) 30 

Table 1: Material properties and parameters used in this study. 
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The foregoing analysis are performed by setting the radiation coefficients constants, )2,1(5.0  iki and 

)4,3(1  iki , so as to obtain considerable mathematical simplicities.  

The derived numerical results from equation (8.7) to (9.8) has been illustrated graphically with internal heat source with 
available additional sectional heat on its flat surface. 

 
Figure (7). Temperature distribution with internal heat 

source 

 
Figure (8). Radial stress distribution with internal heat 

source 

 
Figure (9). Tangential stress distribution with internal 

heat source 

 

Figure (10). Axial stress distribution for varying along r-
axis with internal heat source 

 

Figure (11). Shear stress distribution for varying along r-
axis 
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CONCLUSION 

In this study, we treated the two-dimensional thermoelastic problem of a hollow cylinder in which sources are 

).().()(),,( 000 ttzzrrtzr  
 We successfully established and obtained the temperature distribution, 

unknown temperature gradient, displacements and stress functions of the cylinder when the boundary conditions are 
known. The integral transform techniques are used to obtain the numerical results.The results that are obtainrd can be 
applied to the design of useful structures or machines in engineering applications. Any particular case of special interest 
can be derived by assigning suitable values to the parameters and functions in the applications 
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