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Abstract-   This paper is concerned with transient thermoelastic problem in which we need to determine the 
temperature distribution, unknown temperature gradient, displacement function and thermal stresses of 
semi-infinite rectangular plate when the boundary conditions are known. Integral transform techniques are 
used to obtain the solution of the problem 
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1. INTRODUCTION 

In 1999, Adams and Bert [1] have studied   thermoelastic vibrations of a laminated rectangular plate subjected to a  
thermal shock. Tanigawa and Komatsubara [2] have discussed   thermal stress analysis of a rectangular plate and 
its thermal stress    intensity factor for compressive stress field. Vihak et al. [3] have  derived the solution of the 
plane thermoelasticity problem for a rectangular     domain. Dange et al. [4] have studied three dimensional inverse 
transient thermoelastic problem of a thin rectangular plate. Ghume and Khobragade [5] have investigated 
deflection of a thick rectangular plate. Roy and Khobragade [6] have discussed transient thermoelastic problem of 
an infinite rectangular slab. Lamba and Khobragade [7] have studied thermoelastic problem of a thin rectangular 
plate due to partially distributed heat supply.  

In 2012, Sutar and Khobragade [8] have discussed inverse thermoelastic problem of heat conduction with internal 
heat generation for the rectangular plate. Khobragade et al. [9] have derived thermal deflection of a thick clamped 
rectangular plate. Roy et al. [10] have studied thermal stresses of a semi infinite rectangular beam. Jadhav and 
Khobragade [11] have discussed inverse thermoelastic problem of a thin finite rectangular plate due to internal heat 
source. Singru and Khobragade [12] have studied thermal stress analysis of a thin rectangular plate with internal 
heat source. Further  Singru and Khobragade [13] have derived, Thermal stresses of a semi-infinite 
rectangular slab with internal heat generation.  

In this paper, an attempt has been made to determine the temperature distribution, unknown temperature gradient, 
displacement function and thermal stresses of semi-infinite rectangular plate occupying the space D: 0  x  a, 0  y 
   with the boundary conditions that the temperature is maintained at zero on the edges y = 0,   and on the 
edge x = o of a thin rectangular plate respectively. 

2. STATEMENT OF THE  PROBLEM 

Consider semi-infinite rectangular plate occupying the space D : 0  x  a, 0  y   . The displacement 
components ux  and uy  in the x and y- direction represented in the integral form as [2] are  
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 and  are the Poisson’s ratio and the linear coefficient of thermal expansion of the material of the plate 
respectively and U(x,y, t) is the Airy’s stress function which satisfy the  following relation 
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where E is the Young’s modulus of elasticity and T is the temperature of the plate satisfying the differential equation 
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subject to the initial condition 

0)0,,( yxT                                                                                                                                                              (2.5)                                                    

 the boundary conditions 

0),,0( tyT                                                                                                                                                            (2.6)                                                                                                                        

),(),,( tygtyaT   (unknown)                           (2.7)                                                                                    

0),0,( txT                                                                                                                                                               (2.8) 

0),,(  txT                                                                                                                                                          (2.9)                                  

The interior condition is 

),(),,( tyftyT   ,  0 <  < a   (known)                                                                                                              (2.10)  

where k is the thermal diffusivity of the material of the plate. 

The stress components in terms of U are given by  
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Equations (2.1) to (2.13) constitute the mathematical formulation of the problem under consideration. 

3.   SOLUTION  OF THE PROBLEM 

Applying Fourier sine transform to the equations (2.4), (2.5), (2.6), (2.7) and (2.10) and using (2.8), (2.9) one  
obtains  
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),(),,( tmsftmsT                                                                                                                                               (3.6)  

where sT denotes Fourier sine transform of T and m is sine transform parameter. 

Applying Laplace transform to the equations (3.1), (3.4), (3.5), (3.6)  and using (3.3) one obtains 
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where sT


 denotes Laplace transform of sT  and s is Laplace transform parameter. 

Equation (3.6) is a second order differential equation whose solution gives 
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where A, B  are arbitrary constants. 

Using (3.9) and (3.11) in (3.12) one obtains  
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Solving (3.13) and (3.14) one obtains 
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Substituting the values of A and B in (3.12) one obtains 
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Using the condition (3.10) to the solution (3.15) one obtains 
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Applying inverse Laplace transform to the equation (3.15) one obtains 
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Using inversion integral to the equation (3.18) one obtains 
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Now to calculate the inversion integral (3.19) where c is greater than the real part of all singularities of the 
integrand. The integral is a single valued function of s in the region bounded by the closed  Bromwich contour of the 
figure given below: 

The line NL is chosen so as to lie all the poles to the right, which are given by 
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22 )/()2/1(  nkR , so that  it will not pass through zero of sinhq. 

The integral over the circular arc tends to zero as n  . 

Now sinh(q) = 0 gives q = (in/)  ie  s = sn = (in/),     n = 1, 2,  3, … 
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Hence the value of )(1 tg  is given by 
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Applying the Convolution Theorem to the equation (3.17) one obtains 
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Also by using the result (3.19), the equation (3.16) gives 
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Applying inverse Fourier sine transform  to the equations (3.20) and (3.21) one obtain the expressions for the 
temperature distribution T(x, y, t) and unknown temperature gradient g(y, t) as 
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



0

sin),(),(   

Substituting the value of T(x,y, t) from (3. 22) in (2.3) one obtains the expression for Airy’s stress function U(x,y, t) 
as 
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IV  DETERMINATION  OF THERMOELASTIC DISPLACEMENT 

Substituting the value of U(x,y, t) from (3.24) in (2.1) and (2.2) one obtains the thermoelastic displacement  
functions ux and uy  as  
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5.   DETERMINATION  OF STRESS FUNCTIONS 

Using (3.24) in (2.11) , (2.12) and (2.13) the stress functions are obtained as 
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6. SPECIAL  CASE 
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Applying Fourier sine transform to the equation (6.1) one obtains  
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Substituting the value of ),( tmf s  from (6.2) in the equations (3.22), (3.23), one obtains  

 




























1 1

1 sin)1(sin),,(
m n

np x
n

npye
k

tyxT







     


















t tt

n
pk

t tdee

0

)(
2

22
2

1




                         (6.3) 

 




























1 1

1 sin)1(sin),(
m n

np a
n

npye
k

tyg







     


















t tt

n
pk

t tdee

0

)(
2

22
2

1




                         (6.4) 

7.  NUMERICAL RESULT 

Set  




k

  ,  = 3.14, a = 2 m,  =1.5 m, t = 1 sec. and k = 0.86 in  the equation (6.4) to obtain 
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8  MATERIAL PROPERTIES 

The numerical calculations has been carried out for an aluminum (pure) rectangular plate with the material properties 
as, 
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Density ρ =169 lb/ft 3 

Specific heat = 0.208  Btu/lbOF 

Thermal conductivity K = 117Btu/(hr. ftOF) 

Thermal diffusivity α = 3.33  ft2/hr. 

Poisson ratio ν = 0.35 

Coefficient of linear thermal expansion αt  = 12.84 x 10-61/F 

Lame constant µ  = 26.67 

Young’s modulus of elasticity E = 70G Pa  

9  DIMENSIONS 

The constants associated with the numerical calculation are taken as  

Width of rectangular plate x = 2m 

Length of rectangular plate y = 102m 

 

 

Graph 1: Temperature distribution versus x 

 

Graph 2: Airy’s stress function versus x 

 

Graph 3: Displacement component versus x 

 

Graph 4: Displacement component versus x 
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Graph 5: Displacement component versus x 

 

Graph 6: Stress function versus x 

 

Graph 7: Stress function versus x 

 

Graph 8: Stress function versus x 

 

10. DISCUSSION   

Graph 1 shows that as the length of rectangular plate (x) increases, the temperature increases gradually for different 
values of y. Graph 2 shows that as length of rectangular plate (x) increase, Airy’s stress Function also increases up 
to certain values of x and then becomes stable. Graph 3 shows that displacement function (Ux) increase as length of 
rectangular plate(x) increase at particular value of y. Graph 4  shows that displacement function (Uy) increase as 
length of rectangular plate(x) increase at particular value of y. Graph 5 shows that displacement function(Uz) 
increase as length of rectangular plate (x) increase at particular value of y. 

Graph 6  shows that thermal stress  xx  increase as length of rectangular plate (x) increase at particular value of 

y. Graph 7  shows that thermal stress  yy increase as length of rectangular plate (x) increase at particular value of 
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y. Graph 8  shows that thermal stress  zz increase as length of rectangular plate (x) increase at particular 

value of y. 

11  CONCLUSION 

 An inverse transient thermoelastic problem of semi-infinite rectangular plate have been studied. 

 The temperature distribution, unknown temperature gradient, displacement and thermal stresses have been 
investigated with the help of Fourier cosine transform and Laplace transform techniques.    

 The solutions that are obtained can be applied to the design of useful structures or machines in engineering 
applications. 

 Numerical calculations have been carried out and depicted graphically.  

 Any particular case of special interest can be derived by assigning suitable values to the parameters and 
functions in the expressions.  
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