REVIEW ON ADSORPTION ICE-MAKER FOR FISHERY BOAT DRIVEN BY WASTE HEAT OF DIESEL ENGINE EXHAUST

Fenil Jisaheb^{#1}, Hardik Patel^{#2}

 ^{#1}PG Student, Mechanical Engineering Department, SVMIT-Bharuch, Gujarat Technological University.
 ^{#2} Asst.Prof, Mechanical Engineering Department, SVMIT-Bharuch, Gujarat Technological University.
 ¹feniljisaheb22@gmail.com, ²hardik.10888@gmail.com

Abstract— Due to ecological problem and energy crisis in word, the development of sustainable energy utilization system has attracted more attention. An adsorption ice-maker may be used storing fish and other food in fishery boat. Design of efficient heat exchanger use of topping cycle with different adsorbent/adsorbate pair to maximize the performance of the ice maker. Silica-gel/water, zeolite/water and Ac/Methanol pair has been used in adsorption ice-maker. It has been powered by waste heat from water coolant in engine. Due to its relatively low working temperature. Result show that this technology help increase COP of system.

Keywords—Adsorption Ice-maker, Waste Heat, Diesel Engine Exhaust

I. INTRODUCTION

Refrigeration is a process of removing heat from a low-temperature reservoir and transferring it to a high-temperature reservoir. The work of heat transfer is traditionally driven by mechanical means, but can also be driven by heat, magnetism, electricity, laser, or other means. Refrigeration has many applications, including: household refrigerators, industrial freezers and air-conditioning. Mechanical refrigeration technology has rapidly evolved in the last century, from ice harvesting to temperature-controlled rail cars.

1.1 Basic adsorption refrigeration system

1.1.1 Heating and Pressurization

During this period, the adsorber receives heat while being closed. The adsorbent temperature increases, which induces a pressure increase, from the evaporation pressure up to the condensation pressure. This period is equivalent to the "compression" in compression cycles.

1.1.2 Heating and Desorption + Condensation

During this period, the adsorber continues receiving heat while being connected to the condenser, which now superimposes its pressure. The adsorbent temperature continues increasing, which induces desorption of vapor. This desorbed vapor is liquefied in the condenser. The condensation heat is released to the second heat sink at intermediate temperature. This period is equivalent to the "condensation" in compression cycles

1.1.3 Cooling and Depressurization

During this period, the adsorber releases heat while being closed. The adsorbent temperature decreases, which induces the pressure decrease from the condensation pressure down to the evaporation pressure. This period is equivalent to the "expansion" in compression cycles.

1.1.4 Cooling and Adsorption + Evaporation

During this period, the adsorber continues releasing heat while being connected to the evaporator, which now superimposes its pressure. The adsorbent temperature continues decreasing, which induces adsorption of vapor. This adsorbed vapor is vaporized in the evaporator. The evaporation heat is supplied by the heat source at low temperature. This period is equivalent to the "evaporation" in compression cycle.

II. LITERATURE SURVEY

Due to ecological problem and energy crisis in word, the development of sustainable energy utilization system has attracted more attention. Waste-heat driven refrigeration technology represents a promising alternative for food preservation on-board, that could help reducing pollutant emissions. This system also reduce exhaust gas so that it is also useful for environment. Electrical demand also reduce with help of this system.

Author name	Title	Result	Conclusion
S.G. Wang,	Recent developments	The initial test results	A wide variety of the
R.Z. Wang	of refrigeration	show that a COP of 0.18 has	modern large and fast
	technology in fishing	been achieved to produce	fishing vessels include
	vessels	18–20 kg/h of flake ice at	mechanical
		temperature -7°C around.	refrigeration today,
			Along with a
			consideration for energy
			efficiency, increasing
			attention is being given
			also to the use of waste
			heat.
Maciej Chorowski,	Modelling and	Greatest COP was 0.642	It was shown that three-
Piotr Pyrka	experimental	achieved for parameters:	bed
	investigation of an	greatest summary cooling	adsorption chiller can
	adsorption	capacity was 90.5 kW for	achieve above 0.6 COP
	chiller using low-	parameters:	when driven by
	temperature heat from		heating water with
	cogeneration		temperature lower than
			60°C.

1. Various refrigeration cycle

2. Various refriger	-		
Author name	Title	Result	Conclusion
Ramesh P. Sah,	A review on low	With comparison of result of	These adsorption ice
Biplab Choudhury,	grade heat powered	different pairs,	makers are powered by
Ranadip K. Das	adsorption cooling	ACF/Methanol pair has	solar heat and waste heat
	systems	better performance.	of diesel engines. Waste
	for ice production	• $Cop = 0.56$	heat driven adsorption
		(ACF/Methanol)	ice
		• $Cop = 0.12$	makers can be used on
		(Ac/Methanol)	fishing boats to preserve
			fish.
Gequn Shu,	A review of waste	Efficiency of engine without	A detailed literature
Youcai Liang,	heat recovery on	EGR- 49.3% and efficiency	survey of WHR
Haiqiao Wei ,	two-stroke IC engine	of engine with EGR- 54.9%.	technologies based on
Hua Tian,	aboard ships	1.Ac/methanol	waste heat aboard ships
Jian Zhao,	-	Temp.= 100° C, Cop = 0.13	was performed,
Lina Liu		2.Zeolite/water	Refrigeration cycle
		Temp.= 450° C, Cop = 0.25	using WHR technologies
			is more efficient.
L.W. Wang,	The performance of	Result obtain by physical	Considering physical
R.Z. Wang,	two adsorption ice	adsorption working pair:	adsorption working
Z.S. Lu,	making test units	1.Ac/methanol	pairs, the highest
C.J. Chen	using	Scp=32.6 w/kg Cop = 0.12	adsorption quantity of
	activated carbon and	Result obtain by composite	activated carbon-
	a carbon composite	adsorption working pair:	methanol is 59% larger
	as adsorbents	2.CaCl2-Ac/ NH3 is:	than that of activated
		Scp=536.2 w/kg Cop=0.28	carbon-ammonia.
			Composite adsorbents
			CaCl2 and activated
			carbon show best result
Mohamed Hamdy,	An overview on	1. The most commonly	Environmental benefits
Ahmed A. Askalany,	adsorption cooling	working pairs are zeolite-	of applying adsorption
K. Harby,	systems powered by	water and silica gel-water.	cooling technology in
NaderKora	waste heat from	2. The intermittent of ICE	automobile and its
	internal combustion	adsorption cooling system	independence on
	engine	has been commonly studied	conventional energy
	engine	theoretically and	sources makes it highly
		experimentally due to its	attractive for further
		simplicity and low operation	developments and a
		costs.	potential alternative to
			conventional systems in
			the future.
			the future.
Mohamed M.	A review on	1. AC (adsorbent) and	Various types of
Younes, Ibrahim I.	adsorbent-adsorbate	methanol (refrigerant) – 16	adsorbent-adsorbate
El-Sharkawy,		w/kg (SCP) and 0.125 (COP)	
<i>j</i> ,			l

2. Various refrigeration cycle

Abd elnaby Kabeel,	pairs for cooling	2.Monolithic carbon	(refrigerant) pairs have
	applications	(adsorbent) and	been reviewed and
	upphounons	ammonia(refrigerant) – 60	Adsorption
		w/kg (SCP) and 0.12 (COP)	characteristics of the
		3.AC (adsorbent) and	reviewed pairs have
		ammonia(refrigerant) – 104	been summarized.
		w/kg (SCP) and 0.43 (COP)	oven summarized.
		4.Silica gel (adsorbent) and	
		water (refrigerant) – 198.4	
		w/kg (SCP) and 0.30 (COP)	
		5.zeolite (adsorbent) and	
		water (refrigerant) – 7 w/kg	
		(SCP) and 0.25(COP)	
Qun Cui,	Environmental	The maximum adsorption	From the view point of
Gang Tao,	benign working pairs	capacity of water on	adsorption refrigeration
Haijun Chen,	for adsorption	proposed NA reaches 0.7	cycle time, proposed NA
Xinyue Guo,	refrigeration	kg/kg, which is 2.3 times that	is superior to silica gel
		of water on 13x. The	but molecular sieve is
		maximum adsorption	the best,
		capacity of ethanol on NB is	from the point of
		0.68 kg/kg, which is three	utilizing high-
		times that of ethanol on	temperature waste heat,
		activated carbon.	the NA is a promising
			adsorbent to substitute
			molecular sieve
Q.W. Pan,	Experimental	1. A 4-valve adsorption	A 4-valve adsorption
R.Z. Wang,	investigation of an	refrigeration prototype is	refrigeration prototype
Z.S. Lu,	adsorption	developed and tested.	using the composite
L.W. Wang	refrigeration	2. Reliability is improved by	adsorbent of calcium
	prototype with the	the design of adsorber and	chloride/activated
	working pair of	heating/cooling circuit.	carbon is designed and
	composite adsorbent-	3. The optimal cycle time and	manufactured
	ammonia	mass recovery time are 50	
		min and 120s, respectively.	
		4. COP and SCP of typical	
		conditions are 0.197 and	
		205.2 W/ kg, respectively.	

Author name	Title	Result	Conclusion
S.W. Hong,	Application of	Result are as follow:	Embossed plate heat
O.K. Kwon,	embossed plate heat	1. COP decreases and	exchanger (Plate HX)
J.D. Chung,	exchanger to	SCP increases with	type adsorption chiller
	adsorption chiller	increasing embossing	with SWS-1L and
		height.	water pair, using a
		2. COP increases and	numerical method.
		SCP decreases with	The plate HX has a
		increasing embossing	relatively high heat
		pitch.	transfer capacity and
		3. COP increases and	compact size, and this
		SCP decreases with	study is a first attempt
		increasing bed height.	to apply the plate HX
			as a new type of
			adsorption chiller
Zhaohong He,	Study on the	The maximum output	The compact
Yu Bai,	performance of	of 1500 W prototype	adsorption chiller
Hongyu Huang,	compact adsorption	is observed at a	containing vapor
Jun Li,	chiller with vapor	driving heat source	valves has a good
Huhetaoli,	valves	temperature of 368K	working performance.
Noriyuki Kobayashi,			

3. Method for improving efficiency

• Adsorption ice-maker driven by waste heat of diesel engine

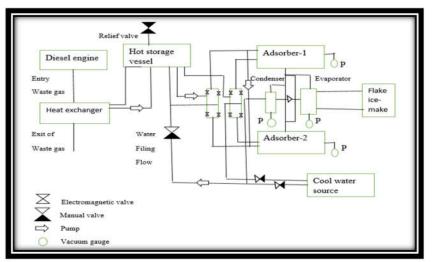


Figure 2.1 schematic diagram of adsorption ice-maker

III. future work

For experimental analysis, will do an experiment on adsorption refrigeration with changing of adsorption pair and measure COP, SCP and cooling temperature and also measure above quantity with change of temperature of waste heat.

IV. CONCLUSIONS

Through the study of all the research papers we conclude that due to the ecological problems and energy crisis in the world, the development of sustainable energy utilization systems has attracted more attention. An adsorption ice maker may be used for storing perishable foodstuffs, fruits, medicines, etc. These adsorption ice makers are powered by low grade heat sources like solar heat, automobile/industrial waste heat etc. Waste-heat driven refrigeration technology represents a promising alternative for food preservation on-board, that could help reducing pollutant emissions. Reduce exhaust gases, So that adsorption system also have environmental benefit. Adsorption system can reduce electricity demand. Three type of adsorbents use in adsorption refrigeration system. Among them physical refrigeration show the advantage of reliable safety. Zeolite-water, silica gel-water, activated carbon-methanol is use as working pair in refrigerator. Among them activated carbon- methanol has more advantage. Heat pipes could be used as heat exchangers for adsorber, evaporators or condensers. It helps to reduce cost and solve the problem of corrosion. Embossed plate heat exchanger use for increase capacity of adsorption refrigeration system. Cop increase with the increase of embossing pitch and bed height.

REFERENCES

[1] S. G. Wang and R. Z. Wang, "Recent developments of refrigeration technology in fishing vessels," vol. 30, pp. 589–600, 2005.

[2] M. Chorowski and P. Pyrka, "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration," *Energy*, pp. 1–9, 2015.

[3] R. P. Sah, B. Choudhury, and R. K. Das, "A review on low grade heat powered adsorption cooling systems for ice production," *Renew. Sustain. Energy Rev.*, vol. 62, pp. 109–120, 2016.

[4] G. Shu, Y. Liang, H. Wei, H. Tian, J. Zhao, and L. Liu, "A review of waste heat recovery on two-stroke IC engine aboard ships," *Renew. Sustain. Energy Rev.*, vol. 19, pp. 385–401, 2013

[5] L. W. Wang, R. Z. Wang, J. Y. Wu, K. Wang, and S. G. Wang, "Adsorption ice makers for fishing boats driven by the exhaust heat from diesel engine : choice of adsorption pair," vol. 45, pp. 2043–2057, 2004.

[6] M. Hamdy, A. A. Askalany, K. Harby, and N. Kora, "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," *Renew. Sustain. Energy Rev.*, vol. 51, pp. 1223–1234, 2015.

[7] M. M. Younes, I. I. El-sharkawy, A. Kabeel, and B. B. Saha, "A review on adsorbentadsorbate pairs for cooling applications," *Appl. Therm. Eng.*, 2016.

[8] Q. C. Ã, G. Tao, H. Chen, X. Guo, and H. Yao, "Environmentally benign working pairs for adsorption refrigeration," vol. 30, pp. 261–271, 2005.

[9] Q. W. Pan, R. Z. Wang, Z. S. Lu, and L. W. Wang, "Experimental investigation of an adsorption refrigeration prototype with the working pair of composite adsorbent-ammonia," 2014.
[10] A. A. Askalany, M. Salem, I. M. Ismael, A. H. H. Ali, M. G. Morsy, and B. B. Saha, "An overview on adsorption pairs for cooling," *Renew. Sustain. Energy Rev.*, vol. 19, pp. 565–572, 2013
[11] Z. Rui *et al.*, "Accepted Manuscript," 2015.

[12] A. Frazzica *et al.*, "Design , realization and testing of an adsorption refrigerator based on activated carbon / ethanol working pair," *Appl. Energy*, vol. 174, pp. 15–24, 2016.

[13] X.Bu, L. Wang, and H. Li, "Working fluid selection for fishing boats waste heat powered organic Rankine-vapour compression ice maker," no. 2,2014.

[14] L. W. Wang, R. Z. Wang, Z. S. Lu, C. J. Chen, K. Wang, and J. Y. Wu, "The performance of two adsorption ice making test units using activated carbon and a carbon composite as adsorbents," vol. 44, pp. 2671–2680, 2006.

[15] S. W. Hong, O. K. Kwon, and J. D. Chung, "Application of an embossed plate heat exchanger to adsorption chiller," *Int. J. Refrig.*, 2016

[16] R. Z. Wang, "Efficient adsorption refrigerators integrated with heat pipes," vol. 28, pp. 317–326, 2008.

[17] Z. He, Y. Bai, H. Huang, J. Li, N. Kobayashi, and Y. Osaka, "Study on the performance of compact adsorption chiller with vapor valves," *Appl. Therm. Eng.*, vol. 126, pp. 37–42, 2017.

[18] Ruzhu Wang, Liwei Wang, Jingyi Wu, "Adsorption Refrigeration Technology"