ON (1,2)*-(sp)*-CLOSED SETS

¹S. GANESAN, ²R. SELVAVINAYAGAM and ²M. MEENA

¹Assistant Professor, PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India.

²Assistant Professor, PG & Research Department of Computer Science, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu, India.

³Assistant Professor, Department of Mathematics, Madurai Sivakasi Nadars Pioneer Meenakshi Women's College, Poovanthi-630611, Tamil Nadu, India.

ABSTRACT

In this paper, we introduce a new class of sets called $(1,2)^*$ - $(sp)^*$ -closed sets in bitopological spaces. We prove that this class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ -g-closed sets. Also we find some basic properties of $(1,2)^*$ - $(sp)^*$ -closed sets. Applying these sets, we introduce a new space called $T_{(1,2)^*(sp)^*}$ space.

2010 Mathematics Subject Classification: 54C10, 54C08, 54C05

Key words and Phrases: $(1,2)^*$ - $(sp)^*$ -closed sets, $(1,2)^*$ - $(sp)^*$ -open sets, $T_{(1,2)^*-(sp)^*}$ -space

1. INTRODUCTION

Ravi and Lellis Thivagar [6] introduced the concepts of $(1,2)^*$ -semi-open sets, $(1,2)^*$ - α -open sets, $(1,2)^*$ -generalized closed sets and $(1,2)^*$ - α -generalized closed sets in bitopological spaces. Jafari etal [2] introduced the notion of $(1,2)^*$ - $\alpha \hat{g}$ -closed sets and investigated its fundamental properties. In this chapter we introduce a new class of sets called $(1,2)^*$ -(sp)*-closed sets in bitopological spaces and prove that this class lies between the class of $\tau_{1,2}$ -closed sets and the class of $(1,2)^*$ -g-closed sets. Further we introduce a new space called $T_{(1,2)^*-(sp)^*}$ -space.

2. PRELIMINARIES

Throughout this paper, X and Y denote bitopological spaces (X, τ_1 , τ_2) and (Y, σ_1 , σ_2), respectively, on which no separation axioms are assumed.

Definition 2.1 [6]

Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$.

We call $\tau_{1,2}$ -closed set is the complement of $\tau_{1,2}$ -open.

Example 2.2

Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a, c\}, \{b, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{b\}, X\}$ are called $\tau_{1,2}$ -closed.

Definition 2.3 [6]

Let S be a subset of X. Then

- (i) The $\tau_1 \tau_2$ -interior of S, denoted by $\tau_1 \tau_2$ -int(S) or $\tau_{1,2}$ -int(S), is defined by $\cup \{F : F \subset S \text{ and } F \text{ is } \tau_{1,2}$ -open $\}$.
- (ii) The $\tau_1 \tau_2$ -closure of S, denoted by $\tau_1 \tau_2$ -cl(S) or $\tau_{1,2}$ -cl(S), is defined by $\cap \{F : S \subset F \text{ and } F \text{ is } \tau_{1,2}$ -closed}.

Remark 2.4 [6]

Notice that $au_{1,2}$ -open sets need not necessarily form a topology.

Remark 2.5 [3, 6]

Without proving we list the following properties for the bitopological space (X, τ_1 , τ_2), where $\tau_{1,2}$ -open subsets are defined as above.

(P0) If
$$S_1 \subset S_2 \subset X$$
, then $\tau_1 \tau_2$ -int $(S_1) \subset \tau_1 \tau_2$ -int (S_2) and $\tau_1 \tau_2$ -cl $(S_1) \subset \tau_1 \tau_2$ -cl (S_2) .

(P1) (a) $\tau_1 \tau_2$ -int(S) is $\tau_{1,2}$ -open for each S \subset X;

(b)
$$\tau_1 \tau_2$$
-cl(S) is $\tau_{1,2}$ -closed for each S \subset X.

(P2) (a) A set
$$S \subset X$$
 is $\tau_{1,2}$ -open if and only if $S = \tau_1 \tau_2$ -int(S);

(b) A set $S \subset X$ is $\tau_{1,2}$ -closed if and only if $S = \tau_1 \tau_2$ -cl(S).

(P3) (a) For any
$$S \subset X$$
 we have $\tau_1 \tau_2$ -int $(\tau_1 \tau_2$ -int (S)) = $\tau_1 \tau_2$ -int (S) ;

(b) For any $S \subset X$ we have $\tau_1 \tau_2 \operatorname{-cl}(\tau_1 \tau_2 \operatorname{-cl}(S)) = \tau_1 \tau_2 \operatorname{-cl}(S)$.

(P4) (a)
$$\tau_1 \tau_2$$
-int $(X - S) = X - \tau_1 \tau_2$ -cl (S) for any $S \subset X$;

(b)
$$\tau_1 \tau_2 \operatorname{-cl} (X - S) = X - \tau_1 \tau_2 \operatorname{-int} (S)$$
 for any $S \subset X$.

(P5) (a)
$$\tau_1 \tau_2$$
-int (S) = int τ_1 (S) \cup int τ_2 (S) for any S \subset X;

(b)
$$\tau_1 \tau_2 \operatorname{-cl}(S) = \operatorname{cl} \tau_1(S) \cap \operatorname{cl} \tau_2(S)$$
 for any $S \subset X$.

- (P6) For any family $\{S_i / i \in I\}$ of subsets of X we have :
 - (a₁) $\bigcup_{i} \tau_1 \tau_2$ -int (S_i) $\subset \tau_1 \tau_2$ -int (\bigcup_{i} S_i);
 - $\begin{array}{ll} (b_1) & \bigcup \ \tau_1 \tau_2 \operatorname{-cl} (S_i) \subset \ \tau_1 \tau_2 \operatorname{-cl} \ (\bigcup S_i); \\ & i \end{array}$
 - $(a_2) \quad \begin{array}{c} \tau_1 \tau_2 \operatorname{-int} (\bigcap S_i) \subset \bigcap \\ i \\ i \\ \end{array} \tau_1 \tau_2 \operatorname{-int} (S_i);$
 - $(b_2) \quad \begin{array}{c} \tau_1\tau_2\operatorname{-cl}{(\bigcap S_i)} \subset \ \cap \ \tau_1\tau_2\operatorname{-cl}{(S_i)}. \\ i \end{array}$

We recall the following definitions which are useful in the sequel.

Definition 2.6

A subset A of a bitopological space (X, τ_1 , τ_2) is called

- (1) $(1,2)^*$ -semi-open [10] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)).
- (2) $(1,2)^* \alpha$ -open [4, 10] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))).
- (3) $(1,2)^* \beta$ -open [11] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int($\tau_{1,2}$ -cl(A))).

The complement of a $(1, 2)^*$ -semi-open (resp. $(1,2)^*$ - α -open, $(1,2)^*$ - β -open) set is called $(1,2)^*$ -semi-closed (resp. $(1,2)^*$ - α -closed, $(1,2)^*$ - β -closed).

The $(1,2)^*$ - α -closure [2, 7] (resp. $(1,2)^*$ -semi-closure [2, 7], $(1,2)^*$ - β -closure [16, 17]) of a subset A of X, denoted by $(1,2)^*$ - α cl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ - β cl(A)) is defined to be the intersection of all $(1,2)^*$ - α -closed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*$ - β -closed) sets of X containing A. It is known that $(1,2)^*$ - α cl(A) (resp. $(1,2)^*$ -scl(A), $(1,2)^*$ - β cl(A)) is a $(1,2)^*$ - α -closed (resp. $(1,2)^*$ -semi-closed, $(1,2)^*$ - β -closed) sets. For any subset A of an arbitrarily chosen bitopological space, the $(1,2)^*$ - α -interior [2, 7] (resp. $(1,2)^*$ -semi-interior [2, 7], $(1,2)^*$ - β -interior [16, 17]) of A, denoted by $(1,2)^*$ - α int(A) (resp. $(1,2)^*$ -sint(A), $(1,2)^*$ - β int(A)) is defined to be the union of all $(1,2)^*$ - α -open (resp. $(1,2)^*$ -semi-open, $(1,2)^*$ - β -open) sets of X contained in A.

Definition 2.7

A subset A of a bitopological space (X, τ_1 , τ_2) is called

(1) (1,2)*-g-closed [12, 14] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. Then complement of (1,2)*-g-closed set is called (1,2)*-g-open set.

(2) (1,2)*-gsp.closed [15, 17] if $\tau_{1,2} - \beta \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open. Then complement of (1,2)*-gsp-closed set is called (1,2)*-gsp-open set.

(3) $(1,2)^*$ -gs-closed [10] if $\tau_{1,2}$ -scl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. Then complement of $(1,2)^*$ -gs-closed set is called $(1,2)^*$ -gs-open set.

(4) $(1,2)^*$ - \hat{g} -closed [1, 17] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -semi-open in X. Then complement of $(1,2)^*$ - \hat{g} -closed set is called $(1,2)^*$ - \hat{g} -open set.

(5) $(1,2)^*$ - αg -closed [2, 6] if $\tau_{1,2}$ - α cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. Then complement of $(1,2)^*$ - αg -closed set is called $(1,2)^*$ - αg -open set.

(6) $(1,2)^* - \alpha \hat{g}$ -closed [2] if $\tau_{1,2} - \alpha$ cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^* - \hat{g}$ -open in X. Then complement of $(1,2)^* - \alpha \hat{g}$ -closed set is called $(1,2)^* - \alpha \hat{g}$ -open set.

Remark 2.8

The collection of all $(1,2)^*$ -g-closed (resp. $(1,2)^*$ -gsp.closed, $(1,2)^*$ -gs-closed, $(1,2)^*$ - \hat{g} -closed, $(1,2)^*$ - αg -closed, $(1,2)^*$ - αg -closed) sets is denoted by $(1,2)^*$ -gc(X) (resp. $(1,2)^*$ -gspc(X), $(1,2)^*$ -gsc(X), $(1,2)^*$ - \hat{g} c(X), $(1,2)^*$ - αg c(X), $(1,2)^*$ - αg c(X)).

Definition 2.9

A bitopological space (X, τ_1 , τ_2) is called

- (1) (1,2) * - $T_{1/2}$ -space [5, 14] if every (1,2)*-g-closed set in it is $\tau_{1,2}$ -closed.
- (2) $T_{(1,2)^*b}$ -space [2] if every (1,2)*-gs-closed set in it is $\tau_{1,2}$ -closed.
- (3) $\alpha T_{(1,2)^*b}$ -space [2] if every (1,2)*- αg -closed set in it is $\tau_{1,2}$ -closed.
- (4) $T_{(1,2)^*-\alpha \hat{g}}$ -space [2] if every (1,2)*- $\alpha \hat{g}$ -closed set in it is (1,2)*- α -closed.

Proposition 2.10 [2]

(1)Every $\tau_{1,2}$ -closed set is $(1,2)^* - \alpha$ -closed but not conversely.

(2)Every (1,2)*- α -closed set is (1,2)*- $\alpha \hat{g}$ -closed but not conversely.

(3)Every (1,2)*- $\alpha \hat{g}$ -closed set is (1,2)*- αg -closed but not conversely.

(4)Every (1,2)*- $\alpha \hat{g}$ -closed set is (1,2)*- gs-closed but not conversely.

Remark 2.11 [11]

We have the following implication for properties of subsets

 $(1,2)^* - \alpha$ -closed $(1,2)^* - \beta$ -closed $(1,2)^* - \beta$ -closed

3.BASIC PROPERTIES OF (1,2)*-(sp)*-CLOSED SETS

Definition 3.1

A subset A of a bitopological space (X, τ_1 , τ_2) is said to be (1,2)*-(sp)*-closed. If $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is (1,2)*- β -open in X.

The class of all $(1,2)^*$ -(sp)*-closed subset of X is denoted by $(1,2)^*$ -(sp)*c(X).

Proposition 3.2

Every $\tau_{1,2}$ -closed set is $(1,2)^*$ -(sp)*-closed.

Proof follows from the definition.

Proposition 3.3

Every (1,2)*-(sp)*-closed set is (1,2)*-gsp-closed.

Proof

Let A be a $(1,2)^*$ -(sp)*-closed. Let A \subseteq U and U be $\tau_{1,2}$ -open. Then A \subseteq U and U is $(1,2)^*$ - β -open and $\tau_{1,2}$ -cl(A) \subseteq U, since A is $(1,2)^*$ -(sp)*-closed. Then $\tau_{1,2}$ - β cl(A) \subseteq $\tau_{1,2}$ -cl(A) \subseteq U. Therefore A is $(1,2)^*$ -gsp-closed.

The converse of the above proposition is not true as seen in the following example.

Example 3.4

Let X = {a, b, c}, $\tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in $\{\phi, \{a, b\}, \{b, c\}, X\}$ X} are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{a\}, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Then (1,2)*-(sp)*c(X) = $\{\phi, \{a\}, \{c\}, X\}$ and (1,2)*-gspc(X) = $\{\phi, \{a\}, \{b\}, \{c\}, \{a, c\}, X\}$. Clearly {a, c} is an (1,2)*-gsp-closed but not (1,2)*-(sp)*-closed in X.

Proposition 3.5

Every $(1,2)^*$ -(sp)*-closed set is $(1,2)^*$ -g-closed.

Let A be a $(1,2)^*$ -(sp)*-closed set and U be any $\tau_{1,2}$ -open set containing A. Since A is $(1,2)^*$ -(sp)*-closed and every $\tau_{1,2}$ -open set is $(1,2)^*$ - β -open, $\tau_{1,2}$ -cl(A) \subseteq U. Hence A is $(1,2)^*$ -g-closed.

The converse of the above proposition is not true as seen in the following example.

Example 3.6

Let X = {a, b, c}, $\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$. Then the sets in { ϕ , {a}, {a, c}, {b, c}, X} are called $\tau_{1,2}$ -open and the sets in { ϕ , {a}, {b}, {b, c}, X} are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ -(sp)*c(X) = { ϕ , {a}, {b}, {b, c}, X} and $(1,2)^*$ -gc(X) = { ϕ , {a}, {b}, {b, c}, X}. Clearly {a, b} is an $(1,2)^*$ -g-closed but not $(1,2)^*$ -(sp)*-closed in X.

Proposition 3.7

Every $(1,2)^*$ -(sp)*-closed set is $(1,2)^*$ -gs-closed.

Proof

Let A be a $(1,2)^*$ -(sp)*-closed set and U be any $\tau_{1,2}$ -open set containing A. Since A is $(1,2)^*$ -(sp)*-closed and every $\tau_{1,2}$ -open set is $(1,2)^*$ - β -open, $\tau_{1,2}$ -scl(A) $\subseteq \tau_{1,2}$ -cl(A) \subseteq U. Hence A is $(1,2)^*$ -gs-closed.

The converse of the above proposition is not true in general as it can be seen from the following example.

Example 3.8

Let X = {a, b, c}, $\tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$. Then the sets in $\{\phi, \{a, b\}, \{a, c\}, X\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, \{b\}, \{c\}, X\}$ are called $\tau_{1,2}$ -closed. Then $(1,2)^*$ -(sp)*c(X) = $\{\phi, \{b\}, \{c\}, X\}$ and $(1,2)^*$ -gsc(X) = $\{\phi, \{b\}, \{c\}, X\}$. Clearly $\{b, c\}$ is an $(1,2)^*$ -gs-closed but not $(1,2)^*$ -(sp)*-closed in X.

Proposition 3.9

Every $(1,2)^*$ -(sp)*-closed set is $(1,2)^*$ - \hat{g} -closed.

Proof

Let A be a $(1,2)^*$ -(sp)*-closed set and U be any $(1,2)^*$ -semi-open set containing A. Since A is $(1,2)^*$ -(sp)*closed and every $(1,2)^*$ -semi-open set is $(1,2)^*$ - β -open, $\tau_{1,2}$ -cl(A) \subseteq U. Hence A is $(1,2)^*$ - \hat{g} -closed.

The converse of the above proposition is not true in general as it can be seen from the following example.

Example 3.10

Let X and τ_1 , τ_2 be a defined as in example 3.6. Then $(1,2)^*$ - $\hat{g} c(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Clearly $\{a, b\}$ is $(1,2)^*$ - \hat{g} -closed but not $(1,2)^*$ -(sp)*-closed in X.

Proposition 3.11

Every $(1,2)^*$ -(sp)*-closed set is $(1,2)^*$ - αg -closed.

Proof

Let A be a $(1,2)^*$ -(sp)*-closed set and U be any $\tau_{1,2}$ -open set containing A. Since A is $(1,2)^*$ -(sp)*-closed and every $\tau_{1,2}$ -open set is $(1,2)^*$ - β -open, $\tau_{1,2}$ - α cl(A) $\subseteq \tau_{1,2}$ -cl(A) \subseteq U. Hence A is a $(1,2)^*$ - αg -closed.

The following example supports that the converse of the above proposition is not true.

Example 3.12

Let X and τ_1 , τ_2 be a defined as in example 3.8. Then $(1,2)^* - \alpha g c(X) = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Clearly $\{b, c\}$ is $(1,2)^* - \alpha g$ -closed but not $(1,2)^*$ -(sp)*-closed in X.

Proposition 3.13

Every $(1,2)^*$ -(sp)*-closed set is $(1,2)^*$ - $\alpha \hat{g}$ -closed.

Proof

Let A be a $(1,2)^*$ - $(sp)^*$ -closed set and U be any $(1,2)^*$ - \hat{g} -open containing A. Since A is $(1,2)^*$ - $(sp)^*$ -closed and every $(1,2)^*$ - \hat{g} -open set is $(1,2)^*$ - β -open, $\tau_{1,2}$ - α cl(A) $\subseteq \tau_{1,2}$ -cl(A) \subseteq U. Hence A is a $(1,2)^*$ - $\alpha\hat{g}$ -closed.

The following example supports that the converse of the above proposition is not true.

Example 3.14

Let X and τ_1 , τ_2 be a defined as in example 3.6. Then $(1,2)^* - \alpha \hat{g} c(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$. Clearly $\{a, b\}$ is $(1,2)^* - \alpha \hat{g}$ -closed but not $(1,2)^*$ -(sp)*-closed in X.

Proposition 3.15

Let (X, τ_1 , τ_2) be a bitopological space and A \subset X. Then the following are true.

- (1) If A is $(1,2)^*$ -g-closed, then A is $(1,2)^*$ -gsp-closed.
- (2) If A is $(1,2)^*$ αg -closed, then A is $(1,2)^*$ -gsp-closed.
- (3) If A is $(1,2)^*$ -gs-closed, then A is $(1,2)^*$ -gsp-closed.

Proof

(1), (2), (3): Since $(1,2)^* - \beta \operatorname{cl}(A) \subset (1,2)^* \operatorname{scl}(A) \subset (1,2)^* - \alpha \operatorname{cl}(A) \subset \tau_{1,2} - \operatorname{cl}(A)$, the proof is clear.

Remark 3.16

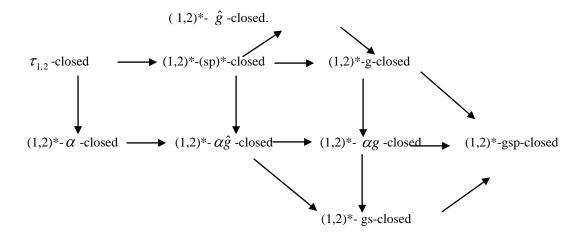
The converse of proposition 3.15 is not true. For,

Example 3.17

Let X and τ_1 , τ_2 be a defined as in example 3.4. Then $(1,2)^*-gc(X) = (1,2)^*-\alpha g c (X) = (1,2)^*-gsc(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Clearly the set $\{b\}$ is $(1,2)^*$ -gsp-closed but it is not $(1,2)^*$ -g-closed (resp. $(1,2)^*-\alpha g - closed, (1,2)^*$ -gs-closed).

Remark 3.18

From the above discussions and known results in [2] we obtain the following diagram where A — B represents A implies B, but not conversely.



None of the above implications is reversible as shown in the remaining examples and in the related paper [2].

Remark 3.19

The union of two $(1,2)^*$ -(sp)*-closed sets need not be $(1,2)^*$ -(sp)*-closed as shown in the following example.

Example 3.20

Let X = {a, b, c}, $\tau_1 = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{a, b\}, X\}$. Then the sets in { ϕ , {a}, {c}, {a, b}, {a, c}, {b, c}, X\} are called $\tau_{1,2}$ -open and the sets in { ϕ , {a}, {b}, {c}, {a, b}, {b, c}, X\} are called $\tau_{1,2}$ -closed. Then (1,2)*-(sp)*c(X) = { ϕ , {a}, {b}, {c}, {a, b}, {b, c}, X. Clearly {a} and {c} are (1,2)*-(sp)*-closed but {a, c} is not (1,2)*-(sp)*-closed.

Proposition 3.21

If a set A is $(1,2)^*$ -(sp)*-closed, then $\tau_{1,2}$ -cl(A) – A contains no nonempty $\tau_{1,2}$ -closed.

Proof

Let A be is $(1,2)^*$ -(sp)*-closed and F a $\tau_{1,2}$ -closed subset of $\tau_{1,2}$ -cl(A) –A. Then $A \subset F^c$, F^c is $\tau_{1,2}$ -open and hence $(1,2)^*$ - β -open. Since $(1,2)^*$ -(sp)*-closed, $\tau_{1,2}$ -cl(A) $\subset F^c$. Consequently $F \subset \tau_{1,2}$ -cl(A) \cap $((\tau_{1,2}$ -cl(A))^c = ϕ .

The converse of proposition 3.21 need not be true.

Example 3.22

Let X and τ_1 , τ_2 be a defined as in example 3.4. Let A = {a, c}, $\tau_{1,2}$ -cl(A) –A contains no nonempty $\tau_{1,2}$ closed set. However A is not (1,2)*-(sp)*-closed.

Proposition 3.23

If a set A is $(1,2)^*$ -(sp)*-closed, then $\tau_{1,2}$ -cl(A) - A contain no non empty $(1,2)^*$ - β -closed set.

Proof

Let A be is $(1,2)^*$ -(sp)*-closed and S be a $(1,2)^*$ - β -closed subset of $\tau_{1,2}$ -cl(A) - A. Then A \subseteq S^c and S^c is $(1,2)^*$ - β -open. So $\tau_{1,2}$ -cl(A) \subseteq S^c. Hence S \subseteq $(\tau_{1,2}$ -cl(A))^c. Thus, S \subseteq $\tau_{1,2}$ -cl(A) \cap $((\tau_{1,2}$ -cl(A))^c = ϕ .

Proposition 3.24

Let A be a $(1,2)^*$ -(sp)*-closed subset of (X, τ_1 , τ_2). If $A \subseteq B \subseteq \tau_{1,2}$ -cl(A) then, B is also a $(1,2)^*$ -(sp)*-closed subset of (X, τ_1 , τ_2).

Proof

Let U be a $(1,2)^*-\beta$ -open set of (X, τ_1, τ_2) such that $B \subseteq U$. Since $A \subseteq B$, we have $A \subseteq U$, since A is $(1,2)^*-(sp)^*$ -closed set, $\tau_{1,2}$ -cl $(A) \subseteq U$. Also since $B \subseteq \tau_{1,2}$ -cl(A), $\tau_{1,2}$ -cl $(B) \subseteq \tau_{1,2}$ -cl(A)) = $\tau_{1,2}$ -cl $(A) \subseteq U$. Thus $\tau_{1,2}$ -cl $(B) \subseteq U$. Hence B is also $(1,2)^*-(sp)^*$ -closed subset of (X, τ_1, τ_2) .

Proposition 3.25

If A is a $(1,2)^*$ - β -open and $(1,2)^*$ -(sp)*-closed subset of (X, τ_1 , τ_2) then , A is a $\tau_{1,2}$ -closed subset of (X,

 $\tau_1,\,\tau_2).$

Proof

Since A is $(1,2)^*$ - β -open and $(1,2)^*$ -(sp)*-closed, $\tau_{1,2}$ -cl(A) \subseteq A. Hence A is $\tau_{1,2}$ -closed.

4. APPLICATIONS

Definition 4.1

A subset A of (X, τ_1, τ_2) is called $(1,2)^*$ -(sp)*-open if and only if A^c is $(1,2)^*$ -(sp)*-closed in (X, τ_1, τ_2) .

Remark 4.2

For a subset A of (X, τ_1 , τ_2), $\tau_{1,2}$ -cl(A^c) = [$\tau_{1,2}$ -int(A)]^c

Theorem 4.3

A subset A of (X, τ_1 , τ_2) is (1,2)*-(sp)*-open if and only if $F \subseteq \tau_{1,2}$ -int(A) whenever F is (1,2)*- β -closed and $F \subset A$.

Proof

Necessity: Let A be $(1,2)^*$ -(sp)*-open set in (X, τ_1 , τ_2). Let F be $(1,2)^*$ - β -closed and F \subset A. Then F^c \supseteq A^c and F^c is $(1,2)^*$ - β -open. Since A^c is $(1,2)^*$ -(sp)*-closed, $\tau_{1,2}$ -cl(A^c) \subseteq F^c. By remark 4.2 $\tau_{1,2}$ -int(A)]^c \subseteq F^c. That is F $\subset \tau_{1,2}$ -int(A).

Sufficiency: Let $A^c \subseteq U$ where U is $(1,2)^* \cdot \beta$ -open. Then $U^c \subset A$ where U^c is $(1,2)^* \cdot \beta$ -closed. By the hypothesis $U^c \subseteq \tau_{1,2}$ -int(A). That is $[\tau_{1,2} - int(A)]^c \subseteq U$. By remark 4.2, $\tau_{1,2} - cl(A^c) \subseteq U$. This implies A^c is $(1,2)^* - (sp)^*$ -closed. Hence A is $(1,2)^* - (sp)^*$ -open.

Proposition 4.4

If $\tau_{1,2}$ -int(A) \subseteq B \subseteq A and A is $(1,2)^*$ -(sp)*-open then B is $(1,2)^*$ -(sp)*-open.

Proof

 $\tau_{1,2}$ -int(A) \subseteq B \subseteq A implies A^c \subseteq B^c \subseteq [$\tau_{1,2}$ -int(A)]^c. By remark 4.2, A^c \subseteq B^c \subseteq [$\tau_{1,2}$ -cl(A^c)]. Also A^c is (1,2)*-(sp)*-closed. By proposition 3.22, B^c is (1,2)*-(sp)*-closed. Hence B is (1,2)*-(sp)*-open.

As an application of $(1,2)^*$ -(sp)*-closed sets we introduce the following definition.

Definition 4.5

A space (X, τ_1 , τ_2) is called a $T_{(1,2)^*-(sp)^*}$ -space if every (1,2)*-(sp)*-closed set in it is $\tau_{1,2}$ -closed.

Example 4.6

Let X and τ_1 , τ_2 be a defined as in example 3.6. Thus (X, τ_1 , τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space

Proposition 4.7

Every (1,2) * - $T_{1/2}$ -space is $T_{(1,2)^*-(sp)^*}$ -space but not conversely.

Proof

Follow from proposition 3.5

The converse of proposition 4.7 need not be true as seen from the following example.

Example 4.8

Let X and τ_1 , τ_2 be a defined as in example 3.8, $(1,2)^*$ -gc(X) = { ϕ , {b}, {c}, {b, c}, X}. Thus (X, τ_1 , τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space but not a $(1,2)^*$ - $T_{1/2}$ -space.

Proposition 4.9

Every $T_{(1,2)^*b}$ -space is $T_{(1,2)^*-(sp)^*}$ -space but not conversely.

Proof

Follow from proposition 3.7

The converse of proposition 4.9 need not be true as seen from the following example.

Example 4.10

Let X and τ_1 , τ_2 be a defined as in example 3.6, $(1,2)^*$ -gsc(X) = { ϕ , {a}, {b}, {a, b}, {b, c}, X}. Thus (X, τ_1 , τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space but not a $T_{(1,2)^*b}$ space.

Proposition 4.11

Every $\alpha T_{(1,2)^*b}$ -space is $T_{(1,2)^*-(sp)^*}$ -space but not conversely.

Proof

Follow from proposition 3.11

The converse of Proposition 4.11 need not be true as seen from the following example.

Example 4.12

Let X and τ_1 , τ_2 be a defined as in example 3.4, $(1,2)^* - \alpha g c(X) = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Thus (X, τ_1, τ_2) is a $T_{(1,2)^* - (sp)^*}$ -space but not a $\alpha T_{(1,2)^* b}$ -space.

Proposition 4.13

Every $T_{(1,2)^*-\alpha \hat{g}}$ -space is $T_{(1,2)^*-(sp)^*}$ -space but not conversely.

Proof

Let A be a $(1,2)^*$ -(sp)*-closed. Then A is $(1,2)^*$ - $\alpha \hat{g}$ -closed. Since (X, τ_1, τ_2) is $T_{(1,2)^*-\alpha \hat{g}}$ -space, A is $(1,2)^*$ - α -closed. It is true that every $(1,2)^*$ - α -closed is $(1,2)^*$ - β -closed. Therefore X is $T_{(1,2)^*-(sp)^*}$ -space.

The converse of Proposition 4.13 need not be true as seen from the following example.

Example 4.14

Let X and τ_1 , τ_2 be a defined as in example 3.14. Thus (X, τ_1 , τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space but not a $T_{(1,2)^*-\alpha\hat{g}}$ -space.

Theorem 4.15

For a space (X, τ_1 , τ_2) the following conditions are equivalent:

(1) (X, τ_1 , τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space.

(2) Every singleton subset of (X, τ_1 , τ_2) is either (1,2)*- β -closed or $\tau_{1,2}$ -open.

Proof

 $(1) \rightarrow (2)$. Let $x \in X$. Suppose $\{x\}$ is not a $(1,2)^*$ - β -closed set of (X, τ_1, τ_2) . Then $X - \{x\}$ is not a $(1,2)^*$ - β -open set. So X is the only $(1,2)^*$ - β -open set containing $X - \{x\}$. So $X - \{x\}$ is a $(1,2)^*$ - $(sp)^*$ -closed set of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space, $X - \{x\}$ is a $\tau_{1,2}$ -closed set of (X, τ_1, τ_2) or equivalently $\{x\}$ is a $\tau_{1,2}$ -open set of (X, τ_1, τ_2) .

(2) \rightarrow (1). Let A be a (1,2)*-(sp)*-closed subset of (X, τ_1 , τ_2). Trivially $A \subset \tau_{1,2}$ -cl(A). Let $x \in \tau_{1,2}$ -cl(A) By (2) {x} is either (1,2)*- β -closed or $\tau_{1,2}$ -open.

Case (a) Suppose that $\{x\}$ is $(1,2)^*$ -(sp)*-closed. If $x \notin A$, then $\tau_{1,2}$ -cl(A) –A contains a nonempty $(1,2)^*$ - β -closed set $\{x\}$. By proposition 3.23 we arrive at a contradiction. Thus $x \in A$.

Case (b) Suppose that {x} is $\tau_{1,2}$ -open. Since $x \in \tau_{1,2}$ -cl(A), {x} $\cap A \neq \phi$. This implies that $x \in A$. Thus in any case, $x \in A$. So $\tau_{1,2}$ -cl(A) $\subset A$. Therefore $\tau_{1,2}$ -cl(A) = A or equivalently A is a $\tau_{1,2}$ -closed. Hence (X, τ_1, τ_2) is a $T_{(1,2)^*-(sp)^*}$ -space.

REFERENCES

- [1] Z. Duszynski, M. Jeyaraman, M. Sajan Joseph, M. Lellis Thivagar, and O. Ravi, A new generalization of closed sets in bitopology, *South Asian Journal of Mathematics*, 4(5), (2014), 215-224.
- [2] S. Jafari, M. Lellis Thivagar, and Nirmala Mariappan, On $(1,2)^*$ - $\alpha \hat{g}$ -closed sets, J. Adv. Math. Studies, 2(2) (2009), 25-34.
- [3] K. Kayathri, O. Ravi, M. Lellis Thivagar, and M. Joseph Israel, Decompositions of (1,2)*- rgcontinuous maps in bitopological spaces, *Antarctica J. Math.*, 6(1) (2009), 13-23.
- [4] M. Lellis Thivagar, O. Ravi, and M.E. Abd El-Monsef, Remarks on bitopological (1,2)*-quotient mappings, J. Egypt Math. Soc, 16(1) (2008), 17-25.
- [5] M. Lellis Thivagar, M. Joseph Israel, and O. Ravi, On preserving (1,2)*-g-closed set in bitopology, *International Journal of Mathematics Archive*, 2(3), (2011), 382-384.
- [6] O. Ravi, and M. Lellis Thivagar, On stronger forms of (1,2)*- quotient mappings in bitopological spaces, *Internat. J. Math. Game Theory and Algebra*, 14(6) (2004), 481-492.
- [7] O. Ravi, M. Lellis Thivagar, and E. Hatir, Decomposition of $(1,2)^*$ -continuity and $(1,2)^*-\alpha$ continuity, Miskolc Mathematical Notes, 10(2) (2009), 163-171.
- [8] O. Ravi, E. Ekici, and M. Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*continuous mappings, *Kochi J. Math.*, 3 (2008), 181-189.
- [9] O. Ravi, M. Lellis Thivagar, and E. Ekici, Decomposition of (1,2)*-continuity and complete (1,2)* continuity in bitopological spaces, *Analele niversitatii Din Oradea*. *Fasc. Matematica Tom XV (2008)*, 29-37.
- [10] O. Ravi, and M. Lellis Thivagar, A bitopological (1,2)*-semi-generalized continuous maps, Bull. Malays. Math. Sci. Soc, (2), 29(1) (2006), 79-88.
- [11] O. Ravi, and M. Lellis Thivagar, Remarks on λ-irresolute functions via (1,2)*- sets, Advances in App. Math. Analysis, 5(1) (2010), 1-15.
- [12] O. Ravi, K. Kayathri, M. Lellis Thivagar, and M. Joseph Israel, Mildly (1,2)*- normal spaces and some bitopological functions, *Mathematica Bohemica*, 135(1) (2010), 1-13.
- [13] O. Ravi, S. Pious Missier, and T. Salai Parkunan, On bitopological (1,2)*-generalized homeomorphisms, *Int J. Contemp. Math. Sciences*, 5(11) (2010), 543-557.
- [14] O. Ravi, M. Lellis Thivagar, and Jinjinli, Remarks on extensions of (1,2)*-g-closed maps, *Archimedes J. Math*, 1(2) (2011), 177-187.
- [15] O. Ravi, M. Kamaraj, A.Pandi, and K. Kumaresan, (1,2)*- *g* -closed and (1,2)*- *g* -open maps in bitopological spaces, *International Journal of Mathematical Archive.*, 3(2), (2012), 586-594.
- [16] O. Ravi, M. Lellis Thivagar, and A. Nagarajan, $(1,2)^*$ αg -closed sets and $(1,2)^*$ $g\alpha$ -closed sets (submitted).
- [17] O. Ravi, K..M Dharmalingam, and A. Thamilisai, $\tilde{g}(1,2)^*$ -closed sets in bitopological spaces, International Journal of Mathematics and Its Applications., 3(3A), (2015), 53-61.