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ABSTRACT  

In this paper, we introduce a new class of sets called (1,2)*-(sp)*-closed sets in bitopological spaces. We prove 

that this class lies between the class of 
2,1 -closed sets and the class of (1,2)*-g-closed sets. Also we find some 

basic properties of (1,2)*-(sp)*-closed sets. Applying these sets, we introduce a new space called ** )()2,1( sp
T -

space.   
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 1. INTRODUCTION 

Ravi and Lellis Thivagar [6] introduced the concepts of (1,2)*-semi-open sets, (1,2)*- α-open sets, (1,2)*-

generalized closed sets and (1,2)*- -generalized closed sets in bitopological spaces. Jafari etal [2] introduced 

the notion of (1,2)*- ĝ -closed sets and investigated its fundamental properties. In this chapter we introduce a 

new class of sets called (1,2)*-(sp)*-closed sets in bitopological spaces and prove that this class lies between the 

class of 
2,1 -closed sets and the class of (1,2)*-g-closed sets. Further we introduce a new space called 

)*()*2,1( spT 
-space.   

2. PRELIMINARIES 

Throughout this paper, X and Y denote bitopological spaces (X, 1 , 2 ) and  (Y, 1 , 2 ), respectively, on 

which no separation axioms are assumed.  
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Definition  2.1 [6]   

Let S be a subset of X.  Then S is said to be 
2,1 -open if S = A  B where A  1  and   B  

2 . 

We call 
2,1 -closed set is the complement of 

2,1 -open. 

Example  2.2    

Let  X = {a, b, c}, 1  = {, {a, c}, X} and 2 = {, {b, c}, X}.  Then the sets in   {, {a, c}, {b. c}, X} are 

called 
2,1 -open and the sets in {, {a}, {b}, X} are called  

2,1 -closed. 

Definition  2.3 [6]   

Let S be a subset of X.  Then 

(i) The 21 -interior of S, denoted by 21 -int(S) or 
2,1 -int(S), is defined by   {F : F  S and F is 

2,1 -

open}. 

(ii) The 21 -closure of S, denoted by 21 -cl(S) or 
2,1 -cl(S), is defined by  {F : S  F and F is 

2,1 -

closed}. 

Remark 2.4 [6]  

Notice that 
2,1 -open sets need not necessarily form a topology. 

Remark 2.5 [3, 6] 

Without proving we list the following properties for the bitopological space (X, 1 , 2 ), where      
2,1 -open 

subsets are defined as above. 

(P0) If S1  S2  X, then 21 -int(S1)  21 -int(S2) and 21 -cl(S1)  21 -cl(S2). 

(P1) (a) 21 -int(S) is 
2,1 -open for each S  X; 

 (b) 21 -cl(S) is 
2,1 -closed for each S  X. 

(P2) (a)   A set S  X is 
2,1 -open if and only if S = 21 -int(S); 

 (b)   A set S  X is 
2,1 -closed if and only if S = 21 -cl(S). 

(P3) (a) For any S  X we have 21 -int( 21 -int(S)) = 21 -int (S); 

           (b)    For any S  X we have 21 -cl( 21 -cl(S)) = 21 -cl(S). 

(P4) (a)   21 -int (X – S) = X – 21 -cl (S) for any S  X; 

International Journal of Management, Technology And Engineering

Volume 8, Issue XII, DECEMBER/2018

ISSN NO : 2249-7455

Page No:665



 (b)   21 -cl (X – S) = X – 21 -int (S) for any S  X. 

(P5) (a)  21 -int (S) = int
1  (S)  int

2 (S) for any S  X; 

 (b)  21 -cl (S) = cl
1 (S)  cl

2 (S) for any S  X. 

(P6) For any family {Si / i  I} of subsets of X we have : 

 (a1)   
i
 21 -int (Si)  21 -int (

i
 Si); 

 (b1)   
i
 21 -cl (Si)  21 -cl (

i
 Si); 

 (a2)   21 -int (
i
 Si)  

i
 21 -int (Si); 

 (b2)   21 -cl (
i
 Si)  

i
 21 -cl (Si).  

We recall the following definitions which are useful in the sequel. 

Definition 2.6  

A subset A of a bitopological space (X, 1 , 2 ) is called  

(1)    (1,2)*-semi-open  [10] if  A ⊆ 
2,1 -cl(

2,1 -int(A)).  

(2)   (1,2)*- -open [4, 10] if A ⊆ 
2,1 -int(

2,1 -cl(
2,1 -int(A))).  

(3)   (1,2)*-  -open [11] if A ⊆ 
2,1 -cl(

2,1 -int(
2,1 -cl(A))). 

          The complement of a (1, 2)*-semi-open (resp. (1,2)*- -open, (1,2)*-  -open) set is called  (1,2)*-semi-

closed (resp. (1,2)*- -closed,  (1,2)*-  -closed).  

The (1,2)*- -closure [2, 7] (resp. (1,2)*-semi-closure [2, 7],  (1,2)*-  -closure [16, 17])  of a subset A of X, 

denoted by (1,2)*- cl(A) (resp. (1,2)*-scl(A), (1,2)*-  cl(A)) is defined to be the intersection of all (1,2)*-

 -closed (resp. (1,2)*-semi-closed,  (1,2)*-  -closed)  sets of X containing A. It is known that (1,2)*- cl(A) 

(resp. (1,2)*-scl(A), (1,2)*-  cl(A)) is a (1,2)*- -closed (resp. (1,2)*-semi-closed, (1,2)*-  -closed) sets. For 

any subset A of an arbitrarily chosen bitopological space, the (1,2)*- -interior [2, 7] (resp. (1,2)*-semi-interior 

[2, 7], (1,2)*-  -interior [16, 17]) of A, denoted by  (1,2)*- int(A) (resp. (1,2)*-sint(A), (1,2)*-  int(A)) is 

defined to be the union of all  (1,2)*- -open (resp. (1,2)*-semi-open, (1,2)*-  -open) sets of  X  contained in 

A.  
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Definition 2.7 

 A subset A of a bitopological space (X, 1 , 2 )  is called   

(1)  (1,2)*-g-closed [12, 14] if 
2,1 -cl(A) ⊆ U whenever A ⊆ U and U is 

2,1 -open in X.   Then complement of 

(1,2)*-g-closed set is called (1,2)*-g-open set.  

(2)  (1,2)*-gsp.closed [15, 17] if 
2,1 -  cl(A) ⊆ U whenever A ⊆ U and U is 

2,1 -open.    Then complement of 

(1,2)*-gsp-closed set is called (1,2)*-gsp-open set. 

(3)  (1,2)*-gs-closed [10] if 
2,1 -scl(A) ⊆ U whenever A ⊆ U and U is 

2,1 -open in X. Then complement of 

(1,2)*-gs-closed set is called (1,2)*-gs-open set. 

(4) (1,2)*- ĝ -closed [1, 17] if 
2,1 -cl(A) ⊆ U whenever A ⊆ U and U is (1,2 )*-semi-open in X.    Then 

complement of (1,2)*- ĝ -closed set is called (1,2)*- ĝ -open set. 

(5) (1,2)*- g -closed [2, 6] if 
2,1 - cl(A) ⊆ U whenever A ⊆ U and U is 

2,1 -open in X.   Then complement 

of (1,2)*- g -closed set is called (1,2)*- g -open set.  

(6) (1,2)*- ĝ -closed [2] if 
2,1 - cl(A) ⊆ U whenever A ⊆ U and U is (1,2)*- ĝ -open in X.   Then 

complement of (1,2)*- ĝ -closed set is called (1,2)*- ĝ -open set.  

Remark 2.8 

The collection of all (1,2)*-g-closed (resp. (1,2)*-gsp.closed, (1,2)*-gs-closed, (1,2)*- ĝ -closed, (1,2)*- g -

closed, (1,2)*- ĝ -closed) sets is denoted by (1,2)*-gc(X) (resp. (1,2)*-gspc(X), (1,2)*-gsc(X), (1,2)*- ĝ c(X), 

(1,2)*- g c(X), (1,2)*- ĝ c(X)). 

Definition 2.9  

A bitopological space (X, 1 , 2 ) is  called   

(1) *)2,1( - 2/1T -space [5, 14] if every (1,2)*-g-closed set in it is 
2,1 -closed. 

(2) 
b

T *)2,1(
-space [2] if every (1,2)*-gs-closed set in it is 

2,1 -closed. 

(3) 
b

T *)2,1(
 -space [2] if every (1,2)*- g -closed set in it is 

2,1 -closed. 

(4) 
g

T
ˆ)2,1( * 
-space [2] if every (1,2)*- ĝ -closed set in it is (1,2)*- -closed. 
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Proposition 2.10 [2] 

(1) Every 
2,1 -closed set is (1,2)*- -closed but not conversely. 

(2) Every (1,2)*- -closed set is (1,2)*- ĝ -closed but not conversely. 

(3) Every (1,2)*-
 

ĝ -closed set is (1,2)*- g -closed but not conversely. 

(4) Every (1,2)*-
 

ĝ -closed set is (1,2)*- gs-closed but not conversely. 

Remark 2.11 [11]  

We have the following implication for properties  of subsets 

(1,2)*- -closed              (1,2)*-semi-closed               (1,2)*-  -closed  

3.BASIC PROPERTIES OF (1,2)*-(sp)*-CLOSED SETS   

Definition 3.1  

A subset A of a bitopological space (X, 1 , 2 ) is said to be (1,2)*-(sp)*-closed. If 
2,1 -cl(A) ⊆ U whenever A 

⊆ U and U is (1,2)*-  -open in X.  

The class of all (1,2)*-(sp)*-closed subset of X is denoted by (1,2)*-(sp)*c(X). 

Proposition 3.2  

Every  
2,1 -closed set is (1,2)*-(sp)*-closed. 

Proof follows from the definition. 

Proposition 3.3  

Every (1,2)*-(sp)*-closed set is (1,2)*-gsp-closed. 

Proof  

Let A be a (1,2)*-(sp)*-closed.  Let A ⊆ U and U be 
2,1 -open. Then A ⊆ U and U is (1,2)*-  -open and 

2,1 -

cl(A) ⊆ U, since A is (1,2)*-(sp)*-closed. Then 
2,1 -  cl(A) ⊆     

2,1 -cl(A) ⊆ U. Therefore A is (1,2)*-gsp-

closed. 

The converse of the above proposition is not true as seen in the following example. 
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Example 3.4  

Let  X = {a, b, c}, 1  = {, {a, b}, X} and 
2 = {, {b, c}, X}.  Then the sets in       {, {a, b}, {b. c}, 

X} are called 
2,1 -open and the sets in {, {a},  {c}, X} are called          

2,1 -closed. Then (1,2)*-

(sp)*c(X) = {, {a}, {c}, X}  and (1,2)*-gspc(X) = {, {a}, {b}, {c}, {a, c},  X}. Clearly {a, c} is an 

(1,2)*-gsp-closed  but not (1,2)*-(sp)*-closed in X . 

Proposition 3.5  

Every (1,2)*-(sp)*-closed set is (1,2)*-g-closed. 

Let A be a (1,2)*-(sp)*-closed set and U be any 
2,1 -open set containing A. Since A is (1,2)*-(sp)*-closed and 

every 
2,1 -open set is (1,2)*-  -open, 

2,1 -cl(A) ⊆ U. Hence A is (1,2)*-g-closed. 

The converse of the above proposition is not true as seen in the following example. 

Example 3.6  

Let  X = {a, b, c}, 1  = {, {a}, {a, c}, X} and 2 = {, {b, c}, X}.  Then the sets in {, {a}, {a, c}, {b. c}, X} 

are called 
2,1 -open and the sets in {, {a}, {b}, {b, c}, X} are called 

2,1 -closed. Then (1,2)*-(sp)*c(X) = {, 

{a}, {b}, {b, c}, X}  and (1,2)*-gc(X) =      {, {a}, {b}, {a, b}, {b, c},  X}. Clearly {a, b} is an (1,2)*-g-closed  

but not (1,2)*-(sp)*-closed in X . 

Proposition 3.7  

Every (1,2)*-(sp)*-closed set is (1,2)*-gs-closed. 

Proof  

Let A be a (1,2)*-(sp)*-closed set  and U be any 
2,1 -open set containing A. Since A is (1,2)*-(sp)*-closed and 

every 
2,1 -open set is (1,2)*-  -open, 

2,1 -scl(A) ⊆ 
2,1 -cl(A) ⊆ U. Hence A is (1,2)*-gs-closed. 

The converse of the above proposition is not true in general as it can be seen from the following example.  

Example 3.8  

Let  X = {a, b, c}, 1  = {, {a, b}, X} and 2 = {, {a, c}, X}.  Then the sets in {,       {a, b}, {a. c}, X} are 

called 
2,1 -open and the sets in {, {b}, {c}, X} are called 

2,1 -closed. Then (1,2)*-(sp)*c(X) = {, {b}, {c}, 

X}  and (1,2)*-gsc(X) = {, {b}, {c}, {b, c},  X}. Clearly   {b, c} is an (1,2)*-gs-closed  but not (1,2)*-(sp)*-

closed in X . 
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Proposition 3.9  

Every (1,2)*-(sp)*-closed set is (1,2)*- ĝ -closed. 

Proof  

Let A be a (1,2)*-(sp)*-closed set and U be any (1,2)*-semi-open set containing A. Since A is (1,2)*-(sp)*-

closed and every (1,2)*-semi-open set is (1,2)*-  -open, 
2,1 -cl(A) ⊆ U. Hence A is (1,2)*- ĝ -closed. 

The converse of the above proposition is not true in general as it can be seen from the following example. 

Example 3.10  

Let X and  1 , 2    be a defined as in example 3.6. Then (1,2)*- ĝ c(X) = {, {a}, {b},      {a, b},  {b, c}, X}. 

Clearly {a, b} is  (1,2)*- ĝ -closed but not  (1,2)*-(sp)*-closed in X. 

Proposition  3.11  

Every (1,2)*-(sp)*-closed set is (1,2)*- g -closed. 

Proof  

Let A be a (1,2)*-(sp)*-closed set and U be any 
2,1 -open set containing A. Since A is (1,2)*-(sp)*-closed and 

every 
2,1 -open set is (1,2)*-  -open, 

2,1 - cl(A) ⊆
2,1 -cl(A) ⊆ U. Hence A is a (1,2)*- g -closed. 

The following example supports that the converse of the above proposition is not true. 

Example 3.12 

Let X and  1 , 2    be a defined as in example 3.8. Then (1,2)*- g c(X) = {, {b}, {c}, {b, c}, X}. Clearly {b, 

c} is  (1,2)*- g -closed but not  (1,2)*-(sp)*-closed in X. 

Proposition 3.13  

Every (1,2)*-(sp)*-closed set is (1,2)*- ĝ -closed. 

Proof  

Let A be a (1,2)*-(sp)*-closed set and U be any (1,2)*- ĝ -open containing A. Since A is (1,2)*-(sp)*-closed 

and every (1,2)*- ĝ -open set is (1,2)*-  -open, 
2,1 - cl(A) ⊆ 

2,1 -cl(A) ⊆ U. Hence A is a (1,2)*- ĝ -

closed. 

The following example supports that the converse of the above proposition is not true. 
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Example 3.14 

Let X and  1 , 
2   be a defined as in example 3.6. Then (1,2)*- ĝ c(X) = {, {a}, {b}, {a, b}, {b, c}, X}. 

Clearly {a, b} is  (1,2)*- ĝ -closed but not  (1,2)*-(sp)*-closed in X. 

Proposition 3.15 

Let (X, 1 , 
2 ) be a bitopological space and A  X. Then the following are true. 

(1) If A is (1,2)*-g-closed, then A is (1,2)*-gsp-closed. 

(2) If A is (1,2)*- g -closed, then A is (1,2)*-gsp-closed. 

(3) If A is (1,2)*-gs-closed, then A is (1,2)*-gsp-closed. 

Proof 

(1), (2), (3): Since (1,2)*-  cl(A)   (1,2)*scl(A)   (1,2)*- cl(A)  
2,1 -cl(A), the proof is clear.   

Remark 3.16 

The converse of proposition 3.15 is not true. For, 

Example 3.17 

Let X and 1 , 2   be a defined as in example 3.4. Then (1,2)*-gc(X) = (1,2)*- g c (X) = (1,2)*-gsc(X) = {, 

{a}, {c}, {a, c}, X}. Clearly the set {b} is (1,2)*-gsp-closed but it is not (1,2)*-g-closed (resp.  (1,2)*- g -

closed, (1,2)*-gs-closed). 

Remark 3.18  

From the above discussions and known results in [2] we obtain the following diagram where                 

A              B represents A implies B, but not conversely.  

                            ( 1,2)*- ĝ -closed. 

2,1 -closed                      (1,2)*-(sp)*-closed                   (1,2)*-g-closed 

 

(1,2)*- -closed                 (1,2)*- ĝ -closed              (1,2)*- g -closed             (1,2)*-gsp-closed 

 

                       (1,2)*- gs-closed 
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None of the above implications is reversible as shown in the remaining examples and in the related paper [2]. 

Remark 3.19 

The union of two (1,2)*-(sp)*-closed sets need not be  (1,2)*-(sp)*-closed as shown in the following example. 

Example 3.20 

Let  X = {a, b, c}, 1  = {, {c}, {a, c}, {b, c}, X} and 2 = {, {a}, {a, b}, X}.  Then the sets in {, {a}, {c}, 

{a, b}, {a, c}, {b. c}, X} are called 
2,1 -open and the sets in {, {a}, {b}, {c}, {a, b}, {b, c}, X} are called 

2,1 -closed. Then (1,2)*-(sp)*c(X) = {, {a}, {b}, {c}, {a, b}, {b, c},  X}. Clearly {a} and {c} are (1,2)*-(sp)*-

closed but  {a, c} is not (1,2)*-(sp)*-closed. 

Proposition 3.21 

If a set A is (1,2)*-(sp)*-closed, then 
2,1 -cl(A)  A contains no nonempty 

2,1 -closed. 

Proof 

Let A be is (1,2)*-(sp)*-closed and F  a 
2,1 -closed subset of 

2,1 -cl(A) A. Then      A  F
c 
, F

c  
is 

2,1 -open 

and hence (1,2)*-  -open. Since (1,2)*-(sp)*-closed , 
2,1 -cl(A)         F

c
.  Consequently F   

2,1 -cl(A)  

((
2,1 -cl(A))

c
  = . 

The converse of proposition 3.21 need not be true. 

Example 3.22 

Let X and  1 , 2   be a defined as in example 3.4.  Let A = {a, c}, 
2,1 -cl(A) A  contains no nonempty 

2,1 -

closed set. However A is not (1,2)*-(sp)*-closed. 

Proposition 3.23  

If a set A is (1,2)*-(sp)*-closed, then  
2,1 -cl(A) - A contain no non empty (1,2)*-  -closed set.  

Proof  

Let A be is (1,2)*-(sp)*-closed and S be a  (1,2)*-  -closed subset of  
2,1 -cl(A) - A. Then A  S

c  
and S

c  
is 

(1,2)*-  -open. So 
2,1 -cl(A)  S

c
.  Hence S  (

2,1 -cl(A))
c
. Thus,  S  

2,1 -cl(A)  ((
2,1 -cl(A))

c
  = . 
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Proposition 3.24 

Let A be a  (1,2)*-(sp)*-closed subset of (X, 1 , 2 ). If  A ⊆ B ⊆ 
2,1 -cl(A) then, B is also a (1,2)*-(sp)*-

closed subset of (X, 1 , 2 ).  

Proof 

Let U be a  (1,2)*-  -open set of (X, 1 , 2 )  such that B  U.  Since A  B, we have A  U, since A is 

(1,2)*-(sp)*-closed set, 
2,1 -cl(A)  U. Also since B   

2,1 -cl(A),  
2,1 -cl(B)  

2,1 -cl(
2,1 -cl(A)) =    

2,1 -

cl(A)  U.  Thus 
2,1 -cl(B)  U.  Hence B is also (1,2)*-(sp)*-closed subset of (X, 1 , 2 ).  

Proposition 3.25   

If A is a (1,2)*-  -open and (1,2)*-(sp)*-closed subset of (X, 1 , 2 )  then , A is a 
2,1 -closed subset of (X, 

1 , 2 ). 

Proof  

Since A is (1,2)*-  -open and (1,2)*-(sp)*-closed, 
2,1 -cl(A) ⊆ A. Hence A is 

2,1 -closed. 

4. APPLICATIONS 

Definition 4.1 

A subset A of  (X, 1 , 2 ) is called (1,2)*-(sp)*-open if and only if A
c
 is (1,2)*-(sp)*-closed in         (X, 1 , 

2 ).  

Remark 4.2 

For a subset A of (X, 1 , 2 ),    
2,1 -cl(A

c
) = [

2,1 -int(A)]
c
 

Theorem 4.3 

A subset A of (X, 1 , 2 )  is (1,2)*-(sp)*-open  if and only if F  
2,1 -int(A) whenever F is (1,2)*-  -closed 

and F  A. 
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Proof 

Necessity: Let A be (1,2)*-(sp)*-open set in (X, 1 , 
2 ). Let F be (1,2)*-  -closed and F  A. Then F

c
  A

c
  

and F
c 

is (1,2)*-  -open. Since A
c
 is (1,2)*-(sp)*-closed,  

2,1 -cl(A
c
)  F

c
. By remark 4.2 

2,1 -int(A)]
c
   F

c
. 

That is  F   
2,1 -int(A). 

Sufficiency: Let A
c 
 U where U is (1,2)*-  -open. Then U

c
  A where U

c
 is  (1,2)*-  -closed. By the 

hypothesis U
c 
 

2,1 -int(A). That is  [
2,1 -int(A)]

c 
  U. By remark 4.2,   

2,1 -cl(A
c
)  U. This implies A

c
 is 

(1,2)*-(sp)*-closed. Hence A is (1,2)*-(sp)*-open.     

Proposition 4.4 

If 
2,1 -int(A)  B  A and A is  (1,2)*-(sp)*-open then B is  (1,2)*-(sp)*-open. 

Proof 

2,1 -int(A)  B  A  implies A
c
  B

c
  [

2,1 -int(A)]
c
. By remark 4.2, A

c 
  B

c
         [

2,1 -cl(A
c
)]. Also A

c 
is 

(1,2)*-(sp)*-closed. By proposition 3.22, B
c
 is (1,2)*-(sp)*-closed. Hence B is  (1,2)*-(sp)*-open. 

As an application of  (1,2)*-(sp)*-closed sets we introduce the following definition. 

Definition 4.5 

A space (X, 1 , 2 ) is  called a  
)*()*2,1( spT 

-space if every (1,2)*-(sp)*-closed set in it is 
2,1 -closed. 

Example 4.6 

Let X and  1 , 2   be a defined as in example 3.6. Thus (X, 1 , 2 ) is  a  
)*()*2,1( spT 

-space 

Proposition 4.7 

Every *)2,1( - 2/1T -space is 
)*()*2,1( spT 

-space but not conversely. 

Proof 

Follow from proposition 3.5 

The converse of proposition 4.7 need not be true as seen from the following example.  
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Example 4.8 

Let X and  1 , 
2   be a defined as in example 3.8, (1,2)*-gc(X) = {, {b}, {c}, {b, c},  X}. Thus (X, 1 , 

2 ) is 

a  
)*()*2,1( spT 

-space  but not a  *)2,1( - 2/1T -space. 

Proposition 4.9 

Every 
b

T *)2,1(
-space  is 

)*()*2,1( spT 
-space but not conversely. 

Proof 

Follow from proposition 3.7 

The converse of proposition 4.9 need not be true as seen from the following example.  

Example 4.10 

Let X and  1 , 2   be a defined as in example 3.6, (1,2)*-gsc(X) = {, {a}, {b},       {a, b}, {b, c},  X}. Thus 

(X, 1 , 2 ) is  a  
)*()*2,1( spT 

-space but not a 
b

T *)2,1(
.space. 

Proposition 4.11 

Every 
b

T *)2,1(
 -space  is 

)*()*2,1( spT 
-space but not conversely. 

Proof 

Follow from proposition 3.11 

The converse of Proposition 4.11 need not be true as seen from the following example.  

Example 4.12 

Let X and  1 , 2   be a defined as in example 3.4, (1,2)*- g c(X) = {, {a}, {c},      {a, c},  X}. Thus (X, 1 , 

2 ) is  a  
)*()*2,1( spT 

-space but not a 
b

T *)2,1(
 .-space. 

Proposition 4.13 

Every  
g

T
ˆ)2,1( * 
-space is 

)*()*2,1( spT 
-space but not conversely. 
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Proof 

Let A be a (1,2)*-(sp)*-closed. Then A is (1,2)*- ĝ -closed. Since  (X, 1 , 2 ) is   
g

T
ˆ)2,1( * 
-space, A is 

(1,2)*- -closed. It is true that every  (1,2)*- -closed is (1,2)*-  -closed. Therefore X is 
)*()*2,1( spT 

-space.   

The converse of Proposition 4.13 need not be true as seen from the following example.  

Example 4.14 

Let X and  1 , 
2   be a defined as in example 3.14.  Thus (X, 1 , 

2 ) is  a  
)*()*2,1( spT 

-space but not a 

g
T

ˆ)2,1( * 
-space. 

Theorem 4.15 

For a space (X, 1 , 2 ) the following conditions  are equivalent: 

(1) (X, 1 , 2 ) is a 
)*()*2,1( spT 

-space. 

(2) Every singleton subset of   (X, 1 , 2 )  is either (1,2)*-  -closed  or 
2,1 -open. 

 

Proof 

(1)  (2). Let x  X. Suppose {x} is not a (1,2)*-  -closed set of (X, 1 , 2 ). Then X  {x} is not a (1,2)*-

 -open set. So X is the only  (1,2)*-  -open set containing X  {x}. So  X  {x} is a  (1,2)*-(sp)*-closed  set 

of (X, 1 , 2 ) . Since (X, 1 , 2 )  is a 
)*()*2,1( spT 

-space , X  {x}  is a 
2,1 -closed set of (X, 1 , 2 )  or 

equivalently {x} is a 
2,1 -open set of (X, 1 , 2 ). 

(2)  (1). Let A be a (1,2)*-(sp)*-closed subset of (X, 1 , 2 ). Trivially  A  
2,1 -cl(A). Let x  

2,1 -cl(A) 

By (2) {x} is either (1,2)*-  -closed or 
2,1 -open. 

Case (a) Suppose that {x} is (1,2)*-(sp)*-closed. If x  A, then 
2,1 -cl(A) A contains a nonempty (1,2)*-  -

closed set {x}. By proposition 3.23 we arrive at a contradiction.  Thus  x  A. 

Case (b) Suppose that {x} is 
2,1 -open. Since x  

2,1 -cl(A), {x}  A   . This implies that x  A. Thus in 

any case,  x A. So 
2,1 -cl(A)  A. Therefore 

2,1 -cl(A) = A  or equivalently A is a 
2,1 -closed. Hence  (X, 

1 , 2 ) is a 
)*()*2,1( spT 

-space. 
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