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Abstract 

 

In this paper, the output voltage estimation of RC low pass filter (LPF) and RC high pass filter (HPF) 

has been proposed using extended Kalman filter (EKF). The proposed method demonstrates the high 

signal to noise ratio (SNR) as compared to least mean squares (LMS)method. Also, it has the advantage 

of easy design and implementation. 
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1. INTRODUCTION 
 

Parameter estimation is an important area in the field of science and technology. Various estimation 

techniques have been used by researcher. There are two basic parameter estimation methods: - 1) methods 

based on optimization approaches and 2) methods based on stability theory. Differential evolution, 

particle swarm optimization are examples of optimization based methods and Lyapunov stability method, 

synchronization approach based on Lasalle’s principle are stability based estimation methods. The 

parameter estimation methods based on the deterministic minimizes error function between model output 

and measurement data. 

Various methods have been used for parameter estimation of systems. In [1], the effects of white noise 

perturbation on the parameters of electrical network have been analyzed and least square estimation has 

been used after transferring the deterministic model into stochastic models. [2] presented the total least 

square estimation of signal parameter via rotation invariance method. [3] proposed anextended stochastic 

gradient (ESG) filtering and multi innovative filtering for parameter estimation. [4] proposed a parameter 

estimation of permanent magnet synchronous machine using a dynamic particle swarm optimization 

method. We used extended Kalman filter for parameter estimation of resistor capacitor (RC) low pass 

filter (LPF) and high pass filter (HPF). EKF have been used in various applications such as signal 

processing, communication and navigation control [5]- [9]. 

RC low pass filter has many applications. It is used as a discrete time repetitive controller for a fly back 

inverter in continuous conduction mode. The RC low pass filter has been also used for tracking and 

rejection of periodic signals in a typical frequency range. In [10], RC circuit has application in 

microelectromechanical systems (MEMS) sensorthat includes a ring oscillator, an RC controlled pulse 

generator together with a self-tuned inverter converter. The RC high pass filter reduces the bandwidth of 

noise source. [11] proposed RC low pass filter with good asymptotic behavior in the pass band. In [12], 
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the RC LPF is also used in a flexible continuous time delta sigma modulator.  [13] presents RC filter 

implementation in chopper stabilized thin film transistor low noise amplifier, which is used for EEG 

signal acquisition and biomarker extraction system. In [14], it is used in linear periodically time varying 

filter circuit which is used in spectrum scanner. 

We proposed the output voltage estimation of RC LPF and HPF using EKF and compared the 

estimation performance with LMS algorithm. MATLAB simulations show that EKF gives higher SNR as 

compared to LMS method. 

 

 

2. STATE SPACE MODELLING OF RC CIRCUITS 

 
A second order dynamic low pass filter (LPF) with R and C components shown in Fig. 1 (a). Let )(1 tu  

be the input sinusoidal signal. )(
1
tVC  and )(

2
tVC  are the capacitor voltages across 1C and 2C

respectively. The state space model for the circuit shown in Fig.1(a) are obtained by using Kirchhoff 

current law (KCL). The equations are as follows: 
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Figure 1. RC Low Pass Filter and High Pass Filter Circuit. 
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Representing equations (1) and (2) as state space model, we have  
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The output voltage of RCLPF can be written as: 

 

)(
2
tvy c

 
(4) 

Or representing (3) and (4) in state space model, we have 

BuAx
dt

dx
  
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DuCxy   (6) 

x represents the state vector and u  is input vector at the time k .  A , B andC are: 
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The state model in (5) and (6) can be discretized using first order exponential method. The transformed 

equations are expressed as  
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(7) and (8) are discrete representation of equations (5) and (6) respectively obtained using Tkt  , 

where ...3,2,1k  and T is the sampling time. The matrices kA  , kB , kC  and kD  are obtained by 

discretizing A, B, C and D matrices respectively. They are  
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Similarly, state space model for HPF shown in Fig 1(b) can be expressed as 
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where the matrices kA  , kB , kC  and kD  for RC HPF can be obtained by discretizing equations (9)-

(10) i.e. by  substituting Tkt  . For HPF circuit, they are: 
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3. EXTENDED KALMAN FILTER ALGORITHM 
 

EKF is broadly used as state estimation method. It consists of nonlinear state model and observation 

model. EKF is the best linear estimator with respect to minimum-mean-squared error. The EKF 

repeatedly computes set of recursive equations as the system operates. In general, a nonlinear system can 

be mathematically represented as  

 

11 ),(   kkkk wuxfx
 

(11) 
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f  and g  are the nonlinear functions of process and observation model kx and ky respectively. ku  is 

the input vector at the time k . kw  and kv  are the white Gaussian noise with zero mean and variance 

][ T
kkk wwEQ   and ][ T

kkk vvER  respectively. Expanding (11) and (12) using Taylor’s series, we have 
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kJ  and kH  are Jacobian matrices that give partial derivates of f and g with respect to x .Therefore, we 
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The higher order terms can be eliminated for simplify (13) and (14).  The EKF steps are as follows: 

3.1 Initialization of state 

This step sets previous state 11
ˆ

 kk
x  with covariance 11  kk

P . This step also initializes kQ  and kR . 

3.2 Prediction of state 
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After obtaining kJ  using (15), predicted state is computed using kA and kB  as follows: 
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3.3 State update 

This step obtains matrices kC . 

Kalman gain: This step computes the Kalman gain (��) using the following equation 

�� = ��|����C�
�(C���|����C�

� + ��)
�� (18) 

Estimation of state and error covariance: This step update estimation with measurements as 

���|�� = ���|���� + ��(�� − C�����|����� 

 

And updates error covariance as  

(19) 

 

��|�� = ��|����(I − ��C�) (21) 

Repeat step 3.2. 

After initialization, EKF uses time update and measurement updates. 

 

4. SIMULATION RESULTS 
 

We estimated the output voltage of RC LPF and RC HPF for two different inputs. Fig. 2(a) shows the 

applied sinusoidal input with maximum amplitude of 10 V and frequency 0.01 Hz. The white Gaussian 

noise of zero mean and 0.5 variance has been used for estimation purpose. The output response of LPF 

circuit using EKF and LMS is shown in Fig 2 (b) and Fig 2 (c) respectively.  Fig 2 (d) and Fig. 2 (e) show 

output voltage estimation of HPF using EKF and LMS respectively for sinusoidal noisy input. Fig. 2(f) and 

(g) shows the LPF estimated output voltage for noisy square wave input signal. Similarly, Fig. 2(h) and (i) 

shows output voltage estimation of HPF for noisy square wave input signal using EKF and LMS 

respectively. Table I shows the SNR in each case. 
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(e)      (f) 

 
(g)      (h) 

 
(i) 

Figure 2. a) Input sinusoidal signal, b) Estimated output voltage of LPF using EKF, c) Estimated 

output voltage of LPF using LMS method, d) Estimated output voltage of HPF using EKF, e) 

Estimated output voltage of HPF using LMS method, f) Estimated output voltage of LPF using 

EKF with square wave input, g) Estimated output voltage of LPF using LMS method with square 

wave input, h) Estimated output voltage of HPF using EKF with square wave input. i) Estimated 

output voltage of HPF using LMS with square wave input. 
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Table 1. Comparison of SNR value for different method 

 

Input signal SNR by Proposed 

method (dB) 

SNR by recursive 

LMS method (dB) 

Sinusoidal 

signal in 

LPF 

43.7696 32.7374 

Square wave 

in LPF 

55.994 34.314 

Sinusoidal 

signal in 

HPF 

58.144 26.866 

Square wave 

in HPF 

62.650 60.48 

 

 

5. CONCLUSIONS 
The simulations show the output voltage estimation of RC LPF and HPF using EKF. The Table I shows 

that EKF provide better estimation as compared to LMS method as EKF takes system noise and 

measurement noise into account. Also, it has the advantage of easy design and implementation. 
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