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ABSTRACT- In this paper thermoelastic solution of rectangular plate subjected to the activity of a 
moving heat source is presented. Here the temperature distribution and thermal stresses with the help of 
integral transform technique have been derived. The results are obtained in term of Bessel’s function in 
the form of infinite series. 
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I.  INTRODUCTION 

Araya et al. [1] have derived analytical solution for a transient three dimensional temperature 
distribution due to a moving laser beam. Cheng et al. [2] have studied an analytical model for the 
temperature field in the laser forming of a sheet metal.  Khobragade et al. [3] have discussed inverse 
unsteady-state thermoelastic problem of a thin rectangular plate. Hiranwar et al. [4] have investigated  
thermal deflection of a thick clamped rectangular plate. Kidawa-Kukla [5] has studied temperature 
distribution in a rectangular plate heated by a moving heat source. Chapke et al. [6] have discussed 
thermal stresses of a circular plate with internal heat source.  Marchi and Fasulo [7] have studied heat 
conduction in sector of hollow cylinder with radiation. 

Patil et al. [11] have studied direct thermoelastic problem of heat conduction with internal heat 
generation and partially distributed heat supply in rectangular plate. Roy et al. [12] have discussed 
transient thermoelastic problem of an infinite rectangular slab. Bagade et al.  [13] have derived thermal 
stresses of a semi infinite rectangular beam. Solanke et al. [14] have discussed quasi-static transient 
stresses in a Neumann’s thin rectangular plate with internal moving heat source and Durge et al.[15] 
have studied quasi-static thermal stresses in thin rectangular plate with internal moving line heat source. 
Sutar et al. [16] have discussed inverse thermoelastic problem of heat conduction with internal heat 
generation for the rectangular plate. Thakare et al. [18] have derived thermal stresses of a thin 
rectangular plate with internal moving heat source.  

 In present paper, authors have  considered thermoelastic problem with first, second and third kind 

boundary condition on a rectangular plate occupying the region }0,0,: hzbyaxaD  . 

The solution of the problem is obtained by using finite Marchi-Fasulo transform and Fourier cosine 
transform techniques. The results are obtained in terms of Bessel’s  function in the form of infinite series. 

2. STATEMENT OF THE PROBLEM 
Consider semi-infinite rectangular beam occupying the region }0,0,: hzbyaxaD  . The 

beam is subjected to the motion of moving point heat source at the point ),,0( zy   which move its place 

along zyx ,,  axes with constant velocity vector kvjvivv 321    where 321 ,, vvv  are 

component of velocity vector along zyx ,, axes respectively. The temperature distribution of the 

rectangular beam is given by 
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where k   is the thermal conductivity and   is thermal diffusivity of the material of the plate. 

Consider an instantaneous moving point heat source at point ),,0( zy     and releasing its heat 
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spontaneously at time  t .  Such volumetric moving heat source in rectangular coordinates is given by  

)()()()(),,,( 0 ttzzyyxgtzyxg       

Hence equation (2.1) becomes 
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where tvy 2   and tvz 3 ,  

With initial condition 

0)0,,,( zyxT                                                                                                                                 (2.3)                                                                    

And the boundary conditions are given by 
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  ),,(),,,( 10 tyxftzyxT z                                                                                                                   (2.9) 

  ),,(),,,( 2 tyxftzyxT hz                                                                                                                (2.10)                                               

Introduce a thermal stress function  related to component of stress in the rectangular coordinates 
system as [5] is 

pc                                                                                                                                    (2.11) 

where  c  is the complementary solution and p  is particular solution.  

c  and p  are governed by equations: 
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where 00 , TTT  is initial temperature. Since the plate is thin, z  is negligible. 

The stress functions are given by 
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And 0yy  , 0xy   at by  . 

Equations (2.1) to (2.16) constitute the mathematical formulation of the problem under consideration. 
 

 

Figure 1: Geometry of the problem 

3. SOLUTION OF THE PROBLEM 
Applying finite Marchi-Fasulo transform, finite Fourier sine transform and finite Fourier cosine 
transform,  we get 
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Solving above equation and using initial condition we get 
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Taking inverse Fourier cosine transform, finite Fourier sine and Marchi-Fasulo transform,  we get 
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And unknown function F(x, z, t) is  
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The eigen values m  are the positive roots of the characteristic equation  
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4. DETERMINATION OF STRESS FUNCTION 

Let the suitable form of  satisfying (2.12) is given by 
 







































1,,

21
2 sin

nml

a

xn

a

xn

c
h

zn
ececy






 

      
































h

zn
ececy a

xn

a

xn




cos43
2

                                                                     (4.1) 

Let the suitable form of p  satisfying (2.13) is given by 
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Substituting equation (4.1) and (4.2) in (2.11), one obtains 
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Using (4.3) in  (2.14), (2.15), (2.16) we get 
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Using 0,0  yyxy  ,  at  y  and equation (4.5) and (4.6), we get 
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And 043 CC                                                                                                                                   (4.9) 
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5. SPECIAL CASE  

Set       ,),,( 2222
1

teyyaxaxtyxf         theyyaxaxtyxf  2222
2 ),,(             (5.1) 

6. NUMERICAL RESULTS, DISCUSSION AND REMARKS 

To interpret the numerical computations, we consider material properties of Aluminum metal, which can be 
commonly used in both, wrought and cast forms. The low density of aluminum results in its extensive use in the 
aerospace industry, and in other transportation fields. Its resistance to corrosion leads to its use in food and 
chemical handling (cookware, pressure vessels, etc.) and to architectural uses. 

Modulus of Elasticity, E (dynes/cm2) 6.9  1011 

Thermal expansion coefficient, t(cm/cm-0C) 25.5  10-6 

Thermal diffusivity,  (cm2/sec) 0.86 

Thermal conductivity,  (cal-cm/0C/sec/ cm2) 0.48 

Length of the plate, a (m) 2 

Width of the plate,   (m) 1.5 

Width of the plate, b (m) 2 

Height of the plate, h(m) 0.1 

Table 1: Material properties and parameters used in this study. 
 

7. CONCLUSION 
 
In this paper, the temperature distribution and thermal stresses of a thin rectangular plate have been 
derived by using the finite Marchi-Fasulo transform and finite Fourier cosine transform and finite Fourier 
sine transform techniques. The results are obtained in terms of Bessel’s function in the form of infinite 
series.  
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Graph 1 : Temperature distribution T versus x 
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Graph 2 : Unknown temperature gradient G versus x 
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Graph 3 : Stress function xx versus x 
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Graph 4 : Stress function yy versus x 
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