

Privacy Preserving and Continuous LBS using Grid System

 C TEJOSAI RAM

 A.NARESH KUMAR

1. STUDENT – DEPARTMENT OF CSE,ANURAG ENGINEERING COLLEGE, KODAD, TELANGANA.

2. ASSISTANT PROFESSOR - DEPARTMENT OF CSE ,ANURAG ENGINEERING COLLEGE, KODAD,

TELANGANA.

ABSTRACT
The widespread adoption of location-based services (LBS)
raises increasing concerns for the protection of personal lo-
cation information. A common strategy, referred to as ob-
fuscation, to protect location privacy is based on forwarding
the LSB provider a coarse user location instead of the actual
user location. Conventional approaches, based on such tech-
nique, are however based only on geometric methods and
therefore are unable to assure privacy when the adversary
has semantic knowledge about the reference spatial context.
This paper provides a comprehensive solution to this prob-
lem. Our solution presents a novel approach that obfuscates
the user location by taking into account the semantic knowl-
edge about the reference space. In the paper, we define sev-
eral theoretical notions underlying our approach. We then
propose two different strategies for generating obfuscated
spaces. The paper includes several experimental results as-
sessing performance, storage requirements and accuracy for
the two approaches. The paper also discusses the system
architecture and shows that the approach can be deployed
also for clients running on small devices.

1. INTRODUCTION
The ever increasing collection of personal location data,

pushed by the widespread use of location-sensing technolo-
gies, like satellite positioning systems, RFID and sensors,
and the development of location-based services (LBS), mo-
tivates the great concern for the protection of personal loca-
tion information (location privacy). The communication of
a user’s position to a LBS provider upon a service request
may result in the unauthorized dissemination of personal
location data. Such data, combined with other available in-
formation, may in turn lead to the inference of sensitive in-
formation about individuals. Various approaches have been
thus proposed to assure location privacy. Most of those ap-
proaches are based on obfuscation techniques that aim at
disguising the actual position of the user by forwarding to
the LBS provider fake or less accurate (generalized) location
information. Approaches based on k-anonymization refine
obfuscation techniques by making sure that the generalized
location of each user is undistinguishable from the general-
ized locations of other k − 1 users.

A common problem to all the above approaches is that
they do not take into account semantic knowledge that the
adversary may have about the reference spatial context. We
claim that by exploiting such knowledge, the adversary may
be able to obtain more precise bounds about the actual user
location (referred to as location inference), thus defeating

the obfuscation mechanism. Another major drawback of
such approaches is that they do not support location pri-
vacy preferences, that is, the specification of which locations
are sensitive for which users. Not all locations may have the
same sensitivity for all the users and therefore a suitable ob-
fuscation mechanism should be able to generate obfuscation
locations that are tailored to the privacy preference of each
user. We believe that as we move toward more personalized
LBS, privacy should be one of key personalization dimen-
sions. Before moving to introduce the key contribution of
the paper, we introduce a running example to illustrate the
location inferences that are possible when spatial semantic
knowledge is available to the adversary.

Example 1. Assume that a user of a LBS is located within
a hospital which for this user is a sensitive place, because
the user is a patient of this hospital. Consider the follow-
ing knowledge about the geographical context: the hospital is
close to a lake and to a residential district; all these places,
i.e. the lake, the district and the hospital, cover a polygonal
region. Suppose that no boats are allowed on the lake. As-
sume also that the actual position of the user is obfuscated by
a region containing the user’s position (obfuscated location).
Now suppose that an adversary has such a knowledge. From
the observation of the spatial relationships existing between
the obfuscated location and the spatial entities, like spatial
containment, overlaps and disjointness, the adversary can
easily infer whether the user is located in a sensitive place.

In particular consider the following three cases: a) The
obfuscated location is spatially contained in the extent of the
hospital. In this case, the adversary may easily infer that
the user is located in a sensitive place, that is, the hospi-
tal, although the actual position is blurred to a coarser re-
gion. b)The region corresponding to the user’s obfuscated
location includes the extent of both the hospital and the lake.
Since the user cannot be physically located inside the lake,
because no boats are allowed on the lake, the only realistic
position is within the hospital and thus the obfuscated loca-
tion is still sensitive. Notice that in this case information
about the user’s obfuscated location is combined with pub-
licly available information, i.e., that no boat is allowed on
the lake, in order to infer more precise information about
the actual location of the user. c)The region corresponding
to the user’s obfuscated location overlaps part of the hospital
and part of the residential district. Since the hospital is the
only sensitive place, we can say that the obfuscated location
is “sensitive to some extent”. Suppose now that the user is
not a patient of the hospital, but a physician. In such case
the fact of being located in the hospital is likely not to be

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1449

sensitive for this user.

The example emphasizes the fact that a location, besides
a geometric shape, has a qualitative meaning which depends
on the entities spatially related to such location. The exam-
ple clearly shows that privacy breaches occur because exist-
ing obfuscation techniques are unable to protect against the
inferences made by linking the geometric information with
the location meaning which, depending on the perceptions of
users, may represent sensitive information. The protection
of sensitive location information thus requires techniques
able to take into account the qualitative context in which
users are located as well as their privacy preferences. To
our knowledge, the problem of location privacy inferences
that exploit spatial semantic knowledge has not been yet
addressed.

To address such gap, we have developed the PROBE (Pri-
vacy-preserving Obfuscation Environment) system. PROBE
is able to obfuscate locations by taking into account spa-
tial semantic knowledge and user preferences. The PROBE
approach is based on a notion of personal location privacy
preference, that is, a set of locations that are considered sen-
sitive by an individual; for each such location, the individual
may also specify the sensitivity level. A key component of
PROBE is the privacy model, which we also present in this
paper; such a model allows one to estimate the probability
that an adversary may infer the presence of an individual
inside a location which is sensitive for this individual. Such
model takes also into account semantic knowledge about lo-
cations. Based on such model, PROBE generates personal-
ized obfuscated maps that are then used to obfuscate the user
location when the location has to be sent to the LBS. The
generation of such maps is a key technical issue that we also
address in this paper. We propose two different approaches
for the generation of such maps. In particular we define two
algorithms, called SensFlowP yr and SensFlowHil, based
respectively on the pyramid data structure and the Hilbert
space-filling curves. Those data representation techniques
have been also used in the framework of k-anonymity; their
application to the framework of location obfuscation is a
novel contribution of our work.

We have carried out an extensive experimental analysis
to assess various aspects of the map generation techniques,
such as performance and storage requirements. Our exper-

iments show that our approach is efficient and requires low
storage; as such, those maps can be stored in a large variety
of mobile devices, such as cellular phones. In the paper we
also describe an architecture showing how easily our tech-

nique can be deployed for very large scale user populations.
The rest of the paper is organized as follows. Next sec- tion

discusses related work. Then we introduce the location
privacy model and in the following section the strategy for

the generation of the obfuscated map; next the two algo-
rithms, SensFlowP yr and SensFlowHil are presented; the

experimental evaluation is reported in the subsequent sec-
tion. Then we introduce the architecture of the PROBE

system. Future plans are finally presented in the concluding
section.

2. RELATED WORK
The most recent work on location privacy comprises two

main categories of techniques, focusing respectively on the
obfuscation of location information, and on the notion of

location k-anonymity. The first category includes the ap-
proaches which assume that the user’s identity must be
known to the LBS provider, for example for accounting pur-
poses [1, 5, 3]. The basic idea underlying these approaches is
to hide the actual user’s position by forwarding to the LBS
provider a coarse geometric information. The semantics of
space is not, however, taken into consideration. As such
those approaches do not protect against location inference
attacks, which is the focus of our approach.

The second category of related approaches focuses on the
problem of computing k-anonymous locations. The con-
cept of k-anonymity was initially proposed for relational
databases [16], and then transposed to the LBS context as
follows: the location attribute is treated as a quasi-identifier,
that is as an attribute that though not containing an explicit
reference to the individuals identity, can be easily linked
with external data sources and thus reveals who the individ-
ual is. Hence, a request is location k-anonymous if the user’s
location is undistinguishable form the location of other k-1
individuals. Finally a generalized location is a region con-
taining the position of k individuals. Various location gen-
eralization techniques have been proposed [6, 7, 11, 8]. We
discuss in some detail the techniques proposed by Mokbel et
al. in the context of the Casper system [11] and by Kalnis et
al. [8] because they are related to the obfuscation methods
we propose. In the approach adopted by the Casper system,
space is discretized in a grid of cells which are organized in a
pyramid data structure. In addition, a hash table allows one
to directly locate the user. Such table contains the pointer to
the lowest-level cell in the pyramid in which each user is lo-
cated and his/her privacy profile. A privacy profile is defined
as the pair (k, AMin) where k means that the user wishes
to be k-anonymous, and AMin is the minimum acceptable
area of the generalized location. The location generalization
algorithm works bottom-up; if a cell, or combination of two
adjacent cells, does not satisfy the privacy preferences, the
algorithm is recursively executed with the parent cell un-
til a valid cell is returned. Kalnis et al. [8] have developed
the Hilbert Cloak algorithm which applies to a grid of cells
represented as Hilbert space-filling curve. Users’ positions
are contiguous in the ordering and thus in space; they are
grouped in intervals enclosing k users. Therefore each user
belongs to a unique interval and all users in the same interval
have the same generalized location.

We have used the pyramid and the Hilbert space-filling
curve to define the two obfuscation algorithms. There is,
however, a major difference between our approach and those
above k-anonymity algorithms. In PROBE the goal is to
generalize a region using a sensitivity metrics which takes
into account the semantics of space, while k-anonymity tech-
niques aggregate cells in larger regions based only on the
position of individuals and geometric criteria.

Recent work on relational data privacy has pointed out
that k-anonymity does not ensure a sufficient protection
against other kinds of privacy attacks which originate be-
cause of the availability of background knowledge [10, 9].
Another criticism is that k-anonymity does not take into
account personal anonymity requirements on the acceptable
values of sensitive attributes [17]. In the framework of LBS,
concerns about the limitations of k-anonymity are more re-
cent [2, 15]. However none of those papers propose obfus-
cation techniques able to protect against location inference
attacks. We, in a previous paper [4], have been the first to

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1450

s

!
r �
 Cov(ft);

s !

s !

raise the problem of protecting sensitive locations and pro-
pose a privacy model. Our previous approach has however
many limitations. The notion of privacy preference is diffi-
cult to use in practice; the model assumes that users have
equal probability of being located in any point; moreover
the obfuscation technique is not scalable because based on
an obfuscation algorithm which has a quadratic complexity.
The PROBE system is a significant advance over previous
work in that the privacy model is based on a sensitivity met-
rics defined in terms of probability. The system is scalable
and based on an architecture which is simple to implement
and does not require any third party. The computation of
obfuscated maps in PROBE has a lower complexity that in
our previous approach and therefore represents a significant
advance.

3. THE PRIVACY MODEL

In this section we introduce the privacy model defining
the key concepts of sensitivity, privacy preferences and ob-
fuscated map.

3.1 Preliminaries
We first introduce the basic notions used in the rest of

the paper. The reference space Ω is a possibly bounded
and connected area in two-dimensional space. The geomet-
ric objects located in Ω have a spatial type compliant with
standard type systems for GIS applications [13]. Without
significant loss in generality we restrict ourselves to consider
regions, that is, geometric objects of region type. A simi-
lar approach, however, can be adopted for spatial objects of
linear type, such as road networks.

Spatial types are closed under (appropriately defined) geo-
metric union ∩s, intersection ∩s, difference (\s). We denote
with R the set of regions in Ω. The places of interest are
described in terms of features. A feature describes a real
world entity. It has a unique name, for example Milano,
and a type, for example City [13]. A feature has a spatial
extent of spatial type. In our model, spatial extents are thus
regions. Further, we assume features to be spatially disjoint.
Note that if two places are the one contained in the other,
the corresponding features must be defined so that they do
not overlap. For example if a restaurant is within a park,
then the extent of the park feature should have a hole in cor-
respondence of the restaurant feature extent. An advantage
of our feature-based approach is that spatial features can be
stored in commercial spatial DBMSs and easily displayed as
maps.

The pair of sets (FT, F) representing respectively feature
types and features is referred to as the geographical database
of the application. We introduce some basic functions used
in the rest of the paper. Let ft ∈ FT be a feature type and
f ∈ F be a feature; the following functions are defined: (1)
I(ft) returns the set of features of type ft; (2) Ext(f) re-

an instance of Religious Building, is a sensitive feature. In-
stead a features type is unreachable when it denotes a set
of places which for various reasons, such as physical imped-
iment, cannot be accessed by the user. For example, the
feature type MilitaryZone may be unreachable if the user is
a common citizen. We denote with F TS, FTNR respectively
the set of sensitive and unreachable features types for a given
user. A feature which is neither sensitive nor unreachable is
non-sensitive. Such classification directly extends to regions.

Definition 3.1 (Region classification). Let r be a
region and FS, FNR be respectively the sensitive and un-
reachable feature types. We say that:

• r is sensitive if it contains some sensitive feature or a
portion of it, that is, (ft∈FTS

Cov(ft)) ∩ r ƒ= ∅;

• r is unreachable if it is completely covered by unreach-
able features, that is,

s
ft∈FTNR

• r is non-sensitive if it is neither unreachable nor sen-
sitive.

Example 2. Based on the running example, consider the
features f1...5 in Figure 1, where f1 is a lake, f2 a hospi-
tal, f3 a shopping mall, f4 a residential district, and f5 a
wood. Assume that hospitals are sensitive places, lakes are
unreachable while the remaining features are non-sensitive.
Now consider the regions r1, r2, r3. Region r2 falls inside the
lake f1, thus it is unreachable; region r1 overlaps f2, thus it
is sensitive; region r3 is neither unreachable nor sensitive.

Figure 1: Example of sensitive (r1), unreachable
(r2), and non-sensitive (r3) regions.

Given a region r, we introduce function RC(r) = r \s

ft∈FTNR
Cov(ft) which computes the reachable portion

of r.

3.3 Sensitivity of a region
We first introduce the probability measure P defined over

the set of regions in Ω and ranging in [0,1]. P(r) denotes the
probability that a point in Ω falls inside region r. P (Ω) = 1
and P (∅) = 0. In case of uniform continuous distribution,
the probability is defined as

turns the geometric extent of feature f ; (3) Cov(ft) returns P (r) =

∫

 1 Area(r)
dxdy =

the spatial union of the extents of all features of type ft,
s r Area(Ω) Area(Ω)

that is, Cov(ft) =
!

f ∈I(ft) Ext(f).

3.2 Features classification
Users can specify the feature types that they consider sen-

sitive and unreachable. A feature type is sensitive when it
denotes a set of sensitive places. For example if Religious
Building is a sensitive feature type, then Duomo di Milano,

where 1/Area(Ω) is the probability density function (pdf)
and Area the function returning the surface of the region.

We now estimate the probability that a user, known to
be located in an arbitrary region r, is actually located in a
sensitive place. Consider a sensitive feature type ft ∈ F TS.
We define sensitivity of r wrt ft, denoted as Psens(ft, r),
the probability that a user, known to be in r, is actually

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1451

.

. !

sens

3

within the extent of any sensitive feature of type ft inside
r or overlapping with r. Note that if a user is known to
be in r, then it is also known that he/she is located in the
reachable part of r. Formally:

Definition 3.2 (Sensitivity of a region). Let ft ∈ F

TS and r ∈ R. The sensitivity of r wrt ft is defined as:

Psens(ft, r) ≡ P (Cov(ft)|RC(r)) =
s

25, Area(f4 ∩ r3) = 20, Area(f1 ∩ r3) = 50. If T (hs) = 0.5,
res is non-sensitive, and lake is unreachable then Psens(hs, r3) =
0.5, therefore the privacy preference is satisfied.

Depending on the privacy requirements, this condition
may not however be sufficiently restrictive. Consider the
following example:

Example 5. Consider the feature types ReligiousSite (rs)
P (Cov(ft)∩ RC(r))

= P (RC(r))
ifRC(r) ∅ and Hospital (hs). Let T (rs) = T (hs) = 0.5 be the related

preferences. Now consider the region r in in Figure 2.b and
0 otherwise

Example 3. Consider again the features in figure 1, and

suppose that the probability distribution is uniform, i.e., the
probability associated with a region is proportional to its
area. The lower part of region r3 is covered by an unreach-
able feature and the sensitive feature f2 covers approxima-
tively one quarter of r3. Thus, P (RC(r3)) = 0.5 · P (r3),
P (f2 ∩s r3)) = 0.25 · P (r3), and

Psens(Hospital, r) =
0.25 · P (r3)

= 0.5
0.5 · P (r3)

Therefore, if a user is known to be in r3, the probability that
he/she is inside a sensitive feature is 0.5.

3.4 Privacy preferences
Users can specify “how much private” the obfuscated lo-

cations must be, by specifying privacy preferences. Privacy
preferences (preferences for short) are defined by the thresh-
old function T : F TS → (0, 1). Let T (ft) = v; we say that
v is the threshold value of ft. For example, T (Clinic) = 0.5
means that in any obfuscated location the probability that
an attacker can guess that the user is in a clinic must be
equal or less than 0.5.

We say that a region r satisfies preference T (ft) = v
if the sensitivity Psens(ft, r) is equal or less than v. Note
that we do not consider the preference T (ft) = 1 because
it would mean that ft is not sensitive, against the initial
assumption. We also rule out the preference T (ft) = 0
because it can be only satisfied if ft has no instances which

assume that r is split in two equal parts, one occupied by
a religious site (f2) and the other by a hospital (f1). The
sensitivities of the region wrt rs and hs are thus:

Psens(rs, r) = Psens(hs, r) =
Area(hs)

= 0.5.
Area(r)

According to Definition 3.3, r is weakly privacy-preserving.
However, one can immediately observe that, although the
feature in which the user is located when in r is not known,
the user is certainly located in a sensitive place, i.e. either
in the hospital or in a religious building. The only uncer-
tainty that the adversary has regards which specific sensitive
feature the user is located in. Depending on the privacy re-
quirements of the user, the disclosure of this information
may result into a privacy breach.

For a stronger privacy protection of privacy, we introduce
the notion of strongly privacy-preserving region. We de-
fine the utility function Ft(r) which determines the types of
the sensitive features overlapping region r, that is: Ft(r) =
{fti ∈ F TS|Cov(fti) ∩s r ƒ= ∅}.

Definition 3.4 (Strongly privacy-preserving region).
Let r ∈ R be a region. Let function Πsens(r) be defined as
follows:

P (
s

Cov(fti)|RC(r))) ifRC(r) =ƒ ∅
Π (r) = fti∈F TS

0 otherwise

r is strongly privacy-preserving if and only if the following
condition holds:

is not an interesting case. As we will show later on in the
paper, users specify the threshold function T in their privacy
profile.

Πsens(r) ≤ min
ft∈Ft(r)

T (ft).

3.5 Weakly and strongly privacy-preserving
region

A region is privacy-preserving wrt a privacy profile when
it is “sufficiently obfuscated” for the user. We distinguish
two conditions, referred to as weakly and strongly privacy-
preserving. We say that a region r is weakly privacy-preserving,
if r satisfies all the preferences specified by the user. For-
mally:

Definition 3.3 (Weakly privacy-preserving region).
Let r ∈ R be a region and T a threshold function. r is weakly
privacy-preserving wrt T if and only if the following condi-

Example 6. Consider example 5. r is not a strongly
privacy-preserving region because r is fully covered by sen-
sitive features and thus in any case the user is located in a
sensitive place. Specifically:

Πsens(r) = 1 ¢ 0.5

The following theorem shows that a strongly privacy-pre-
serving region is also weakly privacy-preserving wrt each
feature type while the vice-versa is not true.

Theorem 3.5. Let r ∈ R be a region and T a threshold function.
Then:

tion holds: Πsens(r) ≤ min
ft∈Ft(r)

T (ft) =⇒ ∀ft ∈ F TS, Psens(ft, r) ≤ T (ft).

∀ft ∈ F TS, Psens(ft, r) ≤ T (ft).

Example 4. With reference to Example 1, consider re-
gion 3. It contains part of: a hospital (f2, type hs), a resi-
dential district (f4, type res) and a lake (f1, type lake). As-
sume the following areas: Area(r3) = 100, Area(f2 ∩ r3) =

The reverse implication does not hold.

Proof: Reported in the appendix.
The choice of the privacy-preservation model to adopt, i.e.

weak or strong, depends on the privacy requirements of the
user.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1452

! !

Area(r)1

Area(r)2

Area(r)3

1 2 3 1 2 3

3.6 Obfuscated map
A set of privacy-preserving regions obfuscating all of the

sensitive features in the reference space forms an obfuscated
map. If the regions in such a set are weakly privacy-preserving
then the obfuscated map is weak otherwise it is strong. For-
mally:

Definition 3.6 (obfuscated map). Let Ω be the ref-
erence space, and (FT, F) a geographical database. More-
over let:

- F TS ⊆ FT be a set of sensitive feature types;

- F TNR ⊆ FT be a set of non-reachable feature types;

- T a threshold function.

Then :

(1) An obfuscation of Ω is a set S = {r1, ..rn} of regions
verifying the following conditions:

– ∀i =ƒ j ∈ {1..n}, ri ∩s rj = ∅, that is, the regions
are disjoint

– ∀i ∈ {1..n}, ∃ft ∈ F TS, ri ∩sCov(ft) ƒ= ∅, that is,
each region overlaps at least one sensitive feature
extent

4. COMPUTING THE OBFUSCATED MAPS
We now address the problem of generating the obfuscated

maps. The generation of obfuscated maps poses two main is-
sues. The first issue is how to compute a privacy-preserving
region. The problem is not trivial because the shape of
a privacy-preserving region depends on the distribution of
probability P . The higher is the probability that one guesses
the location of an individual in a sensitive region, the larger
is the area obfuscating such a region. Moreover, an obfus-
cated area may have an irregular shape; therefore standard
spatial operations, such as buffer zoning, which computes
an area at a specified distance around a region, are of little
usefulness. The second problem is how to limit the loss of
geometric precision because an obfuscated position can be
arbitrarily large and that may compromise the quality of
location information.

To address those requirements the key idea is to use a
discrete representation of the reference space. In particular
the reference space is subdivided in a grid of regular cells of
application-dependent size. Given a grid ttR = {c1....cm},
the cells are pairwise spatially disjoint, that is, ∀i ƒ= j ∈
{1, ..m}, ci ∩s cj = ∅. The spatial union of cells is the whole
reference space Ω. The grid ttR is also referred to as the

s s initial partition. The sensitivity is measured with respect to
– i∈{1..n} ri ⊇ ft∈FT

S
Cov(ft), that is, the spa-

tial union set of the regions covers the spatial
union set of the sensitive features

(2) A weakly obfuscated map of Ω is an obfuscation S of
Ω that verifies the following condition:

∀i ∈ {1..n}, ∀ft ∈ F TS, Psens(ft, ri) ≤ T (ft)

(3) A strongly obfuscated map of Ω is an obfuscation S of
Ω that verifies the following condition

cells while the obfuscated locations are computed by aggre-
gating cells around a sensitive cell. A cell which does not
satisfy the privacy requirements is said to be over-sensitive.
Conventionally, we use the term cell to identify an element
of any partition of the reference space and base cell to iden-
tify a cell of the initial partition.

We now reformulate the basic notion of obfuscated map,
previously introduced in the abstract model, based on the
notion of discrete space.

∀i ∈ {1..n}, ∀ft ∈ F TS, Πsens(ft, ri) ≤ min
ft∈Ft(ri)

T (ft) Definition 4.1 (Discrete obfuscated map). Let
ttR = {c1....cm} be the initial partition of Ω and S = {r1...rn}

We refer to the tuple < FTS, FTNR, T > as the privacy
profile associated with the obfuscated map S.

Example 7. Consider the features = {f , f , f } of type

be an obfuscated map of Ω. We say that S is a discrete ob-
fuscated map wrt GR if and only if each obfuscated region
is equal to the spatial union of a set of base cells, that is:

1 2 3 s

ft , ft , ft respectively and the set of regions S = {r ,r ,r } ∀i ∈ {1..n}, ∃cj, . . . cj+k ∈ ttR, ri =
!

t∈{0..k} ct.
illustrated in Figure 2. Assume the following preferences:
T (ft1) = 0.5, T (ft2) = 0.4 and T (ft3) = 0.3.

(a) (b)

Figure 2: Examples of obfuscation spaces

The set S is a weakly obfuscated map because the following
condition is satisfied:

Area(on ∩s rm)

Example 8. The obfuscated map S = {r1, r2, r3} in Ex-
ample 7 is a discrete obfuscated map wrt the grid shown in
Figure 2.

4.1 Outline of the strategy
Finally we reformulate the initial problem of how gen-

erating obfuscated maps in the following terms: given an
initial partition and a privacy profile, compute a set S of re-
gions such that S is a discrete obfuscated map. The notions
of weakly and strongly obfuscated maps can be extended
to discrete obfuscated maps, thus resulting in the notions
of weakly and strongly discrete obfuscated maps. For the
generation of discrete obfuscated maps, we propose the fol-
lowing strategy. Consider a geographical database (FT, F)

∀n, m ∈ {1, 2, 3}, Psens(ftn, rm) =
Area(rm

≤ T (ftn)
)

and a privacy profile PP . The strategy is articulated in two
main phases:

Moreover S is also a strongly obfuscated map:
s s 1. Grid initialization. The reference space is discretized

- Πsens(r1) = Area(f1 ∩ r1)+Area(f3 ∩ r1) < T (ft3) = 0.3 in a grid ttR. For each base cell the coverage of each
s s feature type is first computed by using standard spatial

- Πsens(r2) = Area(f1 ∩ r2)+Area(f2 ∩ r2) < T (ft2) = 0.4
s

- Πsens(r3) =
Area(f2 ∩ r3)

< T (ft2) = 0.4

operators; then the probabilities pi = P (Cov(fti)),
fti ∈ FT , are computed. This operation needs only
to be performed once for each geographical database.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1453

S!

2. Iteration method. Based on privacy profile PP , each

base cell c is logically assigned the tuple < v1...vn >
where vi, i ∈ {1, ..n}, is the sensitivity of the cell c wrt
fti, that is, Psens(c, fti). At the first step of the iter-
ation, the initial partition represents the current par-
tition. The current partition is then checked to verify
whether it represents an obfuscated map. If this is not
the case, it means that at least one cell is not privacy-
preserving. A cell c is thus selected from the set of
cells that are not privacy-preserving and merged with
an adjacent cell to obtain a coarser cell. The result is
a new current partition. This step is iterated until the
solution is found or the partition degenerates into the
whole space.

Next subsection introduces some general properties of the
iteration method.

4.2 Properties of the iteration method
Let ttR be a grid and C be a partition (not necessarily

the initial one) of ttR. Two cells c1, c2 ∈ C are adjacent if
they have a common border. Given two adjacent cells c1,
c2, the operation which merges the two cells generates a
new partition Cj in which cells c1 and c2 are replaced by
cell c = c1 c2. We say that partition Cj is derived from
partition C, written as Cj “ C. Consider the set PCin of
partitions derived directly or indirectly from the initial
partition Cin through subsequent operations of merge. The
poset H = (PCin , “) is a bounded lattice in which the least
element is the initial partition while the greatest element
is the partition consisting of a unique element, that is, the
whole space (called maximal partition).

We now show that when two cells are merged, the sensitiv-
ity of the resulting cell is lower than the maximum between
the sensitivity values of the two starting cells. Then it can
be shown that the maximum sensitivity value in a partition
CA (wrt each feature type and each region) is weakly anti-
monotonic with respect to the “is derived” relation, that
is, that the maximum sensitivity of a partition is equal or
greater than the maximum sensitivity of a derived partition.
Finally we show that depending on the privacy-preserving
model (weakly or strongly), the information about the sen-
sitivity of the reference space Ω can be useful to determine
whether an obfuscated map exists. Proof of theorems are
reported in appendix.

Theorem 4.2. Let c1 and c2 be two cells of a partition

C, and c = c1 ∪s c2. Then:

a) Psens(ft, c) ≤ max{Psens(ft, c1), Psens(ft, c2)}.

b) Πsens(c) ≤ max{Πsens(c1), Πsens(c2)}.

Theorem 4.3. Let CA and CB be two distinct partitions
of PCin and let ft ∈ F TS be a sensitive feature type. Then:

a) CA “ CB =⇒ maxr∈CA Psens(ft, r) ≤ maxr∈CB Psens(ft, r).

b) CA “ CB =⇒ maxr∈CA Πsens(r) ≤ maxr∈CB Πsens(r).

Theorem 4.4. (A) A weakly obfuscated map exists if and
only if the region representing the whole reference space Ω is
weakly privacy-preserving. (B) A sufficient, but not neces-
sary, condition for the existence of a strongly obfuscated map
is that the reference space is strongly privacy-preserving.

Given a privacy profile, multiple obfuscated maps can be
generated. We consider optimal the obfuscated map Sj with
the maximum cardinality, thus possibly consisting of the
finest-grained regions. Next section presents two heuristic
algorithms for the generation of obfuscated maps.

5. OBFUSCATION ALGORITHMS
The first algorithm is referred to as SensPyr. The basic

idea of such algorithm is to represent the grid of cells us-
ing a pyramid data structure similar to the structure used
for k-anonymization in the Casper system [11]. The goal of
Casper, however, is different, in that its goal is k-anonymize
a position of the mobile user requesting a LBS service, whereas
the goal of our approach is to compute the set of regions ob-
fuscating all sensitive cells.

5.1 Algorithm SensPyr

The pyramid data structure takes the form of a tree in
which the nodes represent the regions obtained by recur-
sively subdividing space in quadrants until the base cells
are reached. The root at level 0 corresponds to the entire
reference space; the leaves are the base cells; a node d which
is not a leaf node has four children, each representing a
quadrant of the region denoted by d.

Given a user privacy profile, the value of sensitivity wrt
each feature type can be computed for each cell. The exam-
ple in Figure 3 shows a space populated by a unique feature
of type ‘Hospital’. The pyramid has three levels; the sen-
sitivity value of the cells overlapping the hospital extent is
reported in the tables associate with the cells. Notice that
the sensitivity of any cell c overlapping the hospital, that is,
Psens(c, Hospital), is less than 1 because each such cell is not
entirely occupied by the sensitive feature.

Figure 3: Example of pyramid and associated sensi-
tivity values.

The function computing the obfuscated map is detailed

in Algorithm 1. The input parameters of the function are
the privacy profile pp and the pyramid pyr. Initially the
set tt of privacy-preserving regions is empty. The function
then analyzes each leaf node of pyr (line 3). If the node
cell is not included in any region in tt, and is not privacy-
preserving, the function attempts to generalize the cell with
the quadrant g the cell belongs to at the parent level. Note

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1454

Algorithm 1 SensPyr Algorithm

d Obfuscate the pyramid pyr using privacy profile pp
1: function pyrObfuscate(pyr, pp)
2: tt ←∅ d Obfuscated regions
3: for all cell ∈ pyr.leaves do
4: if ¬obfuscated(cell, tt)∧overSensitive(cell, pp) then

5: g ← generalize(cell, pp)
6: if g = ⊥ then
7: return ⊥ d Cell obfuscation failed
8: else
9: add(tt, g) d Also remove redundancies

10: end if
11: end if
12: end for
13: return tt
14: end function

15: function generalize(cell, pp)
16: if ¬overSensitive(cell, pp) then
17: return cell d cell satisfies pp
18: else if cell = root then
19: return ⊥ d cell obfuscation failed
20: else
21: return generalize(parent(cell), pp)
22: end if
23: end function

that we use the term cell generalization and cell obfuscation
as synonym. If g is not privacy-preserving, the process is
iterated, until a coarser quadrant is found or the top level is
reached. If the generalization is successful, g is added to the
set tt. The add operation, at line 9, removes any previously
any previously privacy-preserving region included in g and
marks the leaf nodes contained in g as “visited”. Therefore
the cells in tt are disjoint. The function returns either a
failure message or a set of grid cells at different resolution.

The sensitivity of each cell (either leaf or internal) is eval-
uated at most once. Therefore, as the total number of cells is
O(n), the complexity of the algorithm, measured as number
of cells is O(n).

An advantage of the algorithm is that the obfuscated re-
gions can be represented in a simple way, for example by the
pair (l, n) where l is the pyramid level and n the position
inside the grid at that level. This algorithm however suffers
from a major drawback, in that the obfuscated regions are
very coarse and thus the quality of the obfuscated location
information is low. We have thus investigated a different
algorithm, referred to as SensHil, which aggregates cells at
the finest granularity and provides more precise obfuscated
locations.

5.2 The algorithm SensHil

SensHil maps the initial grid onto a linear space by using
a Hilbert space-filling curve [14], which have been previously
used in the framework of k-anonymization [11]. Such a curve
is a one-dimensional curve which visits every point within a
two-dimensional space. Figure 4 illustrates the curves rep-
resenting grids with 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32
cells, respectively. Cells are identified by an integer value
corresponding to the order of the cells in the traversal; we
refer to such an order as cell sequence. The interval [a, b]
in the linearized space includes the set of cells which are
visited starting from the ath cell and ending with the bth.
For example in the first grid in Figure 4, the interval [2, 4]
denotes the set of cells {(0, 1), (1, 1), (1, 0)}, corresponding

(0,0) (1,0)

(1,1)

Figure 4: Hilbert curves for different grid sizes

to the 2nd, 3rd, and 4th cells touched by the curve.
The function HilObfuscate, generating an obfuscated map,

is detailed in Algorithm 2. The algorithm consists of two
phases. The first phase is called forward generalization. The
algorithm starts scanning the cell sequence from the first
cell. As an over-sensitive cell cell is found, the algorithm
attempts to generate a privacy-preserving interval g start-
ing from cell. If such interval is found, g is inserted into the
result set tt and the scan proceeds until all cells have been
examined. Upon completion of the scan, it may happen
that the last sensitive cell cannot be generalized, because,
for example, represents the last cell in the cell sequence. If
this is the case, the algorithm expands the current interval
backwards until a convenient interval is found or the en-
tire sequence of cells is scanned again from the last cell to
the first one. This phase is called backward generalization.
Note that in order to ensure that intervals are disjoint, the
addition of g to tt in the backward phase through the add
(G,g) operation, at line 31, may entail a change of the set tt.
For example, the operation add({[1, 2], [4, 7], [8, 9]}, [5, 12])
results into the set tt = {[1, 2], [4, 12]}. Each cell is exam-
ined at most twice, once per phase. The overall complexity
of the SensHil algorithm is, thus, O(n).

5.3 Property of the algorithms
It can be shown that if SensP yr and SensHil do not fail,

the set of regions they return is an obfuscated map. For-
mally:

Theorem 5.1. Let ttR be the initial partition and pp a
privacy profile. The non-empty set PyrObfuscate(ttR, pp)
and the non-empty set HilObfuscated(ttR, pp) are obfus-
cated maps.

Proof. (Sketch) We need to show that the non-empty
set of discrete regions returned by each function satisfies
the definition of discrete obfuscated map. Consider first the
former algorithm. The regions of the obfuscated space are
quadrants at different granularities.

6. EXPERIMENTAL EVALUATION
In this section we report results from the experimental

evaluation of the two obfuscation algorithms. The algo-
rithms have been developed in Java. The implementation of
SensHil relies on the library of C-functions available from
[12]. The experiments were run on a laptop PC equipped
with an AMD Turion Mobile MT30 1.6GHz CPU, 1,37GB
of RAM and Windows XP. The current version assumes an
uniform continuous probability distribution.

Publicly available data sets about places are not suffi-
ciently accurate for our purposes, because places are spa-
tially represented in terms of points and not of regions.
We have thus developed a grid initialization tool, referred
to as Spatially-aware Generalization tool (SAG, for short).
SAG enables the generation of grids randomly populated by
features of user-defined type. Features have a rectangular

(0,1)

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1455

Algorithm 2 SensHil Algorithm

d Obfuscate grid using privacy profile pp
1: function hilObfuscate(grid, pp)
2: tt ←∅ d Obfuscated regions
3: for idx ← 0 . . . maxHilbertIdx(grid) do d Hilbert scan
4: cell ← getHilbertCell(idx)
5: if overSensitive(cell) then
6: g ← generalizeForward(idx, grid, pp)
7: add(tt, g)
8: idx ← g.last
9: end if

10: end for
11: fixBackward(G,pp) d Fix the last interval if needed
12: return tt
13: end function

14: function generalizeForward(startIdx, grid, pp)
15: g ← [startIdx, startIdx] d Result
16: for idx ← startIdx . . . maxHilbertIdx(grid) do
17: g.end ← idx d Expand current interval
18: if ¬overSensitive(g, pp) then
19: return g
20: end if
21: end for
22: return g
23: end function

d Backward expansion if the last interval g violates pp
24: procedure fixBackward(tt, pp)
25: g ← last(tt)
26: if overSensitive(g, pp) then
27: g ← generalizeBackward(g, grid, pp)
28: if overSensitive(g, pp) then
29: tt ←⊥ d Obfuscation failed
30: else
31: add(tt, g) d Also remove redundancies
32: end if
33: end if
34: end procedure

35: function generalizeBackward(g, grid, pp)
36: for idx ← g.first − 1 . . . 0 reverse do
37: g.first ← idx d Expand backward
38: if ¬overSensitive(g, pp) then
39: return g
40: end if
41: end for
42: return g
43: end function

shape, of varying size, and are represented as group of cells.
Each cell c is either empty or completely covered by a fea-
ture of feature type ft. Thus, Psens(ft, c) ∈ {0, 1}. The
operation of grid initialization requires the following param-
eters: a) the number of rows and columns of the grid; b)
the set FT of feature types - a feature type is defined by
simply specifying its name; c) for each type ft ∈ FT , the
percentage of cells covered by ft, that is, sensitive cells, over
the total number of grid cells.

The system populates the space with rectangles of varying
size. The side of each rectangle is generated on a random
basis according to a binomial distribution with parameters
n=6 (number of independent experiments) and p=0.5 (prob-
ability of each experiment). The average size of the rectangle
side is 3 cells while the values range in the interval [0,6].

Another functionality of SAG is to enable the specification
of privacy profiles. The user flags the features types in the
set FT that are unreachable and sensitive and then specifies
for each sensitive feature the threshold value. SAG enables

Figure 5: Obfuscated regions created by: (left)
SensP yr, (right) SensHil

the selection of the obfuscation algorithm for the genera-
tion of the obfuscated map. The parameters are specified
through an end-user interface.

SAG also supports the visualization of the obfuscated
maps returned by the obfuscation algorithm. From Figure 5
one can appreciate the different shapes of the obfuscated
regions generated by SensP yr and SensHil; the dark grey
cells (red in the color version of the paper) are the over-
sensitive features, while the lighter grey cells (blue in the
color version of the paper) fill the obfuscated regions. The
cells in the background are non-sensitive cells. Moreover
the features, that we recall are represented as group of cells,
may be obfuscated by more than one region. In other words,
an obfuscated region may obfuscate a portion of a sensitive
feature and not necessarily the whole feature. This aspect
is important because it allows one to reduce the width of
obfuscated regions.

6.1 The experimental setting
We have carried out two sets of experiments. The first

set of experiments measures the following parameters for
varying percentages of coverage over a grid of fixed size:
the rate of the successful generation of maps, the average
number of obfuscated locations, and the average number of
cells per obfuscated location. The second set of experiments
evaluates the generalization time, that is, the time spent for
generating an obfuscated map (when such a generation is
successful) for grids of varying-size and varying percentage of
coverage, and the comparison between strongly and weakly
obfuscated maps.

6.1.1 Experiments with varying coverage percentage
We use a grid of size 1024×1024 cells for almost all the ex-

periments. At a resolution of 10 metres, the reference space
is thus about 10km × 10km which is the size of an average
city. We consider a unique sensitive feature type. The in-
dependent variable of the experiments is the percentage of
space covered by sensitive cells, that is, the coverage. Such a
variable ranges in the interval [1, 45], which seems a reason-
able choice; a value of x means that the percentage of cells
representing portions of sensitive features is x%. We recall
that the feature extent varies between 0 and 36 cells, with an
average of 9 cells. Further, we consider three possible values
for the threshold function, that is, T (ft) ∈ {0.1, 0.2, 0.4}.
Each algorithm is run 100 times, for different values of the
coverage and the threshold value. We have carried out three
experiments.

Experiment 1: Success rate. We evaluate the rate
of successful generation of obfuscated maps (success rate).
Generating an obfuscated map means to satisfy the privacy
constraints specified in the user profile, based on the spatial
distribution of sensitive places. As the density of sensitive
locations and the strength of privacy requirements increase,

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1456

the probability of failure in the map generation increases.
The graphs in Figure 6 show that the generation is suc-
cessful until the percentage of coverage is below a breaking
value. When the coverage value is higher that such value, a
solution cannot be found. For example, when the threshold
has value 0.4, the breaking value is nearly 40. It can be
noticed that the breaking values are nearly the same for the
two algorithms.

Experiment 2: Average number of obfuscated re-
gions. We evaluate the average number of obfuscated re-
gions returned by the two algorithms when the map genera-
tion process does not fail. The two graphs in Figure 7 show
that the number of obfuscated regions generated by SensHil
is significantly higher than the number of obfuscated regions
generated by SensP yr. It can be noticed that the cardinal-
ity increases up to a maximum value and then decreases.
The reason of such behavior is that for low percentages of
coverage, the number of cells to obfuscate is relatively low.
The number of obfuscated regions however increases up to
a maximum value. When the density of sensitive cells is
too high the algorithms generate large obfuscated areas and
thus the number of obfuscated regions globally decreases.

Experiment 3: Average size of the obfuscated lo-
cation. The goal of this experiment is complementary to
the goal of the previous experiment, in that this experiment
adds the information about the average number of cells in
an obfuscated region and thus about the precision of the
obfuscated regions. Not surprisingly, the graphs in Figure 8
show that the SensHil generates more precise obfuscated
maps than SensPyr. Quantitative values are reported later
on. It can be noticed that the size of the obfuscated maps
grows very rapidly, especially for SensPyr as the percentage
of coverage becomes closer to the breaking point. Figure 11
visualizes the different precision of the obfuscated maps gen-
erated by the two algorithms using a grid 64 × 64 with a
percentage of coverage ranging between 5 and 35.

6.1.2 Experiments on grids of varying size
Table 1 and table 2 report the measures resulting from

the experiments carried out using SensP yr and SensHil,
respectively, over grids of increasing size ranging between
64 × 64 and 4096 × 4096 with a 10% coverage. Each table
row specifies: the grid size (GridSize), the average number
of obfuscated regions (NReg), the average number of cells
per regions (NCell), and the generalization time (GenTime).
If we look at the experiments over a grid of 1024 × 1024 we
observe that:

• The number of obfuscated regions generated by SensHil
is about 40% higher than the number of regions gen-

erated by SensPyr.

• The average number of cells per obfuscated regions in
SensHil is 46 against 118 of SensP yr. At the given
resolution (10m × 10m) the average area of the obfus-
cated region generated by SensHilis thus 4600m2.

• The generalization time for SensHil is 177 ms against

185 ms of SensPyr. The performance is thus not sig-
nificantly different.

Further the two graphs in Figure 9 show that the gener-
alization time increases linearly with the size of the grid for
both algorithms. Moreover, such a time is not significantly
affected by the coverage for coverages that are not close to

the breaking point. Note that the generalization time is
high (few seconds) when the grid is 4096 × 4096. Consider,
however, that these experiments have been run on a laptop.

GridSize NReg NCell GenTime(ms)
64 × 64 28 112 0.49
128 × 128 106 120 2.08
256 × 256 429 118 11.5
512 × 512 1726 118 72
1024 × 1024 6943 117 185
2048 × 2048 27735 117 758
4096 × 4096 111026 117 3255

Table 1: Measures for SensPyr

GridSide NReg NCell GenTime(ms)
64 × 64 43 46 0.49
128 × 128 175 47 2.17
256 × 256 700 47 8.8
512 × 512 2835 46 31
1024 × 1024 11372 46 177
2048 × 2048 45483 46 543
4096 × 4096 181920 46 2104

Table 2: Measures for SensHil

The experiment reported in Figure 10 compares, for both

algorithms, the number of regions in weakly and strongly
obfuscated maps generated from the same profile for varying
grid sizes. We consider two feature classes, ft1 and ft2, with
coverage Cov(ft1) = 5% and Cov(ft2) = 10% respectively.
The graphs in Figure 10 show that strongly obfuscated maps
contain larger regions. However, the strongly obfuscated
maps generated by SensFlowHilb are even more precise than
weakly obfuscated maps generated by SensFlowPyr.

7. A DISTRIBUTED ARCHITECTURE FOR
THE PROBE SYSTEM

Figure 12: Architecture of the obfuscation system

In this section we discuss how the PROBE system can

be deployed in the framework of a LBS architecture. As-
sume a conventional LBS networked infrastructure consist-
ing of a set of GPS-aware clients which can connect to a
LBS provider. The clients are assumed to have computa-
tional resources. Moreover we assume to use the SensHil
algorithm.

PROBE has two main components (see Figure 12): the
Obfuscation Server ((Obfuscator), in charge of generating
obfuscated maps, and the Privacy Enforcer, a client appli-
cation which forwards a possibly obfuscated position to the
LBS.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1457

100

80

60

40

20

0

Success Ratio - Pyramid

0 5 10 15 20 25 30 35 40 45

Average Coverage (%)

100

80

60

40

20

0

Success Ratio - Hilbert

0 5 10 15 20 25 30 35 40 45

Average Coverage (%)

Pyramid T(ft1)=0.1
 Pyramid T(ft1)=0.2

Pyramid T(ft1)=0.4 Hilbert T(ft1)=0.1
 Hilbert T(ft1)=0.2

Hilbert T(ft1)=0.4

Figure 6: Success rate

35000

30000

25000

20000

15000

10000

5000

0

Number of Obfuscated Regions - Pyramid

0 5 10 15 20 25 30 35 40 45

Average Coverage (%)

35000

30000

25000

20000

15000

10000

5000

0

Number of Obfuscated Regions - Hilbert

0 5 10 15 20 25 30 35 40 45

Average Coverage (%)

Pyramid T(ft1)=0.1
 Pyramid T(ft1)=0.2

Pyramid T(ft1)=0.4 Hilbert T(ft1)=0.1
 Hilbert T(ft1)=0.2

Hilbert T(ft1)=0.4

Figure 7: Avg. number of obfuscated regions

10000

1000

100

10

1

Average Obfuscated Region Size - Pyramid

0 5 10 15 20 25 30 35 40 45

Average Coverage (%)

10000

1000

100

10

1

Average Obfuscated Region Size - Hilbert

0 5 10 15 20 25 30 35 40 45

Average Coverage (%)

Pyramid T(ft1)=0.1
 Pyramid T(ft1)=0.2

Pyramid T(ft1)=0.4 Hilbert T(ft1)=0.1
 Hilbert T(ft1)=0.2

Hilbert T(ft1)=0.4

Figure 8: Avg. number of cells per obfuscated region

1000

100

Average Generalization Time - Cov(ft1) = 0.5%

1000

100

Average Generalization Time - Cov(ft1) = 10%

10
512^2 1024^2 2048^2 4096^2

of Cells

Pyramid T(ft1)=0.1 Hilbert T(ft1)=0.1

10
512^2 1024^2 2048^2 4096^2

of Cells

Pyramid T(ft1)=0.2 Hilbert T(ft1)=0.2

Figure 9: Avg. time for varying-size grids and different coverages

100000

10000

1000

100

Number of Obfuscated Regions Cov(ft1)=5%

Cov(ft2)=10% T(ft1)=20% T(ft2)=30%

300

250

200

150

100

50

0

Average Obfuscated Region Size Cov(ft1)=5%

Cov(ft2)=10% T(ft1)=20% T(ft2)=30%

512^2 1024^2 2048^2 4096^2

of Cells

512^2 1024^2 2048^2 4096^2

of Cells

Pyramid Weak
 Pyramid Strong

Hilbert Weak
Hilbert Strong

Pyramid Weak
 Pyramid Strong

Hilbert Weak Hilbert
Strong

Figure 10: Weakly vs strongly obfuscated maps

#

o
f

R
e
g
i
o
n
s

(
m
s
)

#

o
f

C
e
l
l
s

#

o
f

R
e
g
i
o
n
s

%

#

o
f

C
e
l
l
s

(
m
s
)

#

o
f

C
e
l
l
s

#

o
f

R
e
g
i
o
n
s

%

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1458

Figure 11: Obfuscated maps generated by Senspyr (top row) and Senshil (bottom row) algorithms for coverages
ranging from 5% (on the left) to 35% (on the right) with a grid 64 × 64

7.1 The Obfuscator
The Obfuscator generates obfuscated maps upon explicit

requests of users. Whenever needed, but likely not fre-
quently, the client forwards to the Obfuscator the request
of an obfuscated map. Such a request is accompanied by
the privacy profile. We assume that the user, on behalf on
whom the client is running, has composed a privacy profile
through some Web interface presenting, for example, the list
of feature types, even at different granularity, from which
the user can select those unreachable and sensitive and pos-
sibly specify the threshold value. The Obfuscator has access
to a geographical database. If the obfuscated map can be
generated then the Obfuscator returns the resulting map to
the client which keeps it locally. The Obfuscator must be
trusted to generate the obfuscated maps in compliance with
clients’ requests. Note that the code of such service is very
small and therefore it is feasible that the code be verified.
The Obfuscator service can be provided by the LBS provider
or by a third party. To keep the focus on major aspects, we
refer to the former case.

7.1.1 Protocol
Obfuscated Map request. A Obfuscated Map Request

specifies: a) the privacy profile; b)the bounding box of the
area of concern. The privacy profile is a set PP = {t1...tn} of
triples representing the privacy preferences. ti ≡< ft, flag, v >,
i ∈ {1..n}. If flag = 0 then the feature type ft is a sensitive
type and v = T (ft) is the threshold value; conversely ft is
an unreachable feature type. In addition, the user specifies
the bounding box of the region of interest, for example se-
lecting from a predefined list of varying size regions, in such
a way that the the Obfuscator can limit the size of the grid
and thus the size of the obfuscated map to generate and
transfer.

Obfuscated Map Descriptor The Obfuscator sends
back the Obfuscated Map Descriptor. Such a descriptor con-

Grid size # Obfuscated locations ≈ Size(KB)
512 × 512 2835 22

1024 × 1024 11372 90
2048 × 2048 45483 363
4096 × 4096 181920 1455

Table 3: Avg. size of the obfuscated maps

sists of a failure message if the system has not been able to
generate a map. Conversely, it specifies: the bounding box
of the grid used for the generation of the obfuscated map
(MBB), the number of rows and columns of the grid (Dim)
and a non-empty set of obfuscated regions (S). Following
the SensHil algorithm, an obfuscated region r ∈ S is rep-
resented by an interval [a, b] where a and b are the indexes
corresponding to two grid cells in the linear Hilbert space.

7.1.2 Transmission of an obfuscated map
We now estimate the size of the obfuscated map trans-

ferred back to the client. If the encoding of the interval
representing an obfuscated region requires 8 bytes, the size
of an obfuscated map is n × 8 bytes, where n is the number
of regions in the obfuscated map. Based on the experiments
reported the previous section, Table 3 reports the average
size of the obfuscated maps generated for grids of varying
size, assuming a coverage of %10.

7.2 Privacy Enforcer
The Privacy Enforcer is the client application which com-

putes the location information to be transferred to the LBS
provider upon a user’s query. The Privacy Enforcement
function is reported in Algorithm 3. The function requires
in input: the user’s position p, and an obfuscated map de-
scriptor, i.e. MBB, Dim and S. The algorithm maps p
onto a Hilbert index and then checks if such a position is
included in any interval of the set S (line 4). If it is not,

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1459

then the function returns the original position p otherwise
the interval. The position is then transferred to the LBS

privacy-preserving. Since the features of the set F TS =
{ft1, ...f tj} are disjoint, Πsens(r) can be rewritten as:

provider possibly together with the grid description (MBB,
Dim). Πsens (r) = P

sens (ft1, r)+ ... + P

sens (ftj, r)

Algorithm 3 Privacy Enforcer Algorithm

1: function PrivacyEnforcment(p, MBB, Dim, S)
2: CellCoord ← ttetCellCoord(p, MBB, Dim) d Returns

the row and column of the cell containing p
3: HilbertIndex ← ttetHilbertIndex(CellCoord, Dim) d

Returns the Hilbert index of the previous cell
4: Int = ttetInterval(S, HilbertIndex) d Returns the

obfuscated region containing the Hilbert index or null
5: if Int = ⊥ then
6: return p d Returns the original position
7: else
8: return Int d Returns the obfuscated location
9: end if

10: end function

8. CONCLUSIONS

Therefore, if Πsens(r) ≤ minft∈Ft(r){T (ft)} then for each

fti ∈ F TS with i ∈ {1..j}, Psens(fti, r) ≤ minft∈Ft(r){T (ft)} ≤ T

(fti) and thus the thesis is demonstrated.
The inverse implication is not true as shown in the counter-

example 5.

A.2 Theorem 4.2

Proof. We demonstrate only the proposition a), since
the latter proposition can be shown in a similar manner.
For the sake of readability, we denote with x̄ the reachable
part of cell x. Note that c̄ 1 and c̄ 2 are disjoint regions.
Therefore P (c̄) = P (c̄1 ∪s c̄2) = P (c̄1) + P (c̄2).

The inequality can be rewritten as:

Psens(ft, c) ≤ Psens(ft, c1) ∨ Psens(c) ≤ Psens(ft, c2)

PROBE is a comprehensive system for the protection of
location privacy against location inference attacks in LBS.
A key feature of the system is that it allows the subscribers
of a LBS to specify location privacy preferences about the

P (Cov(ft) ∩s c̄)

P (c̄1) + P (c̄2)

P (Cov(ft) ∩s c̄1)
≤

P (c̄1)
P (Cov(ft) ∩s c̄)

∨ ≤ P (c¯)+ P (c¯)

P (Cov(ft) ∩s c̄2)

P (c̄)
places that they consider sensitive as well as the desired de-
gree of privacy protection. As part of PROBE we have also
developed a technique for efficiently computing obfuscated
maps that are personalized based on the user privacy pref-

1

Consider the first inequality:

P (Cov(ft) ∩s c̄)
≤ P (c¯)+ P (c¯)

2 2

P (Cov(ft) ∩s c̄1)
P (c̄)

erences. The technique has very small storage requirements
and thus it is suited for use on small devices, such as cellular
phones.

Our work has many open directions for future research
activities. A first research direction is the integration of
PROBE obfuscation techniques with k-anonymity. K-anonymity

1 2 1

. By applying simple algebraic operations we obtain the
expression:

P (c̄1)P (Cov(ft) ∩
s

c̄2) − P (c̄2)P (Cov(ft) ∩
s

c̄1) ≤ 0 Similarly

consider the second term of the inequality,

techniques do not protect against location inference. Con-
sider a k-anonymized location. If all k individuals are lo-

P (Cov(ft) ∩s c̄)
≤ P (c¯)+ P (c¯)

P (Cov(ft) ∩s c̄2)

P (c̄)
cated inside a hospital and John is known to be one of those
individuals, then one can easily infer that John is inside a
sensitive location. The research goal is thus how to preserve
anonymity while protecting the sensitive location informa-
tion. A different direction is related to ontological questions
about location privacy which has not been investigated yet.
For example, the user may wish to hide being outside a cer-
tain location, rather than being inside. Moreover, privacy
preferences may also depend on time. For example, one
could want to hide his presence at the shop near the work-
place during working hours. The third direction is to extend
PROBE to the support of trajectory anonymity.

9. REFERENCES

APPENDIX

A. PROOFS OF THEOREMS

A.1 Theorem 3.5

Proof. We show that a region which is strongly privacy-
preserving is also weakly privacy-preserving. Case 1) As-

1 2 2

. We obtain:

P (c̄1)P (Cov(ft) ∩
s

c̄2) − P (c̄2)P (Cov(ft) ∩
s

c̄1) ≥ 0

Since one of two expressions must be necessarily true, it
follows that the inequality is verified and thus the thesis is
demonstrated.

A.3 Theorem 4.3

Proof. Point a). Assume to derive CB from CA by ap-
plying a single merge operation between two cells. Follow-
ing Theorem 4.2 the resulting cell c has a sensitivity wrt ft
which is equal or less than the highest sensitivity of the re-
placed cells wrt the same feature type. Therefore, the sensi-
tivity of the derived partition remains the same of the start-
ing partition (if the cell which presents the highest level of
sensitivity wrt ft in CA has not been merged) or it decreases.
Consider now a sequence of merging operations each gener-
ating an intermediate partition CA “ C1 “ C2 “ ...Ck “ CB.
It follows that:

max Psens(ft, r) ≤ max Psens(ft, r) ≤ ≤ max Psens(ft, r)

sume r be unreachable. The following holds: Πsens(r) = 0 ≤
r∈CA r∈C1 r∈CB

minft∈Ft(r){T (ft)}. On the other hand Psens(ft, r) = 0 for
any feature type ft and thus the thesis is demonstrated.
Case 2) Assume r be reachable and assume that r is strongly

that is what we wanted to demonstrate. Point b) can be
shown with an analogous argumentation.

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1460

A.4 Theorem 4.4

Proof. Point a). If the reference space is weakly privacy-
preserving, it constitutes a weakly obfuscated map. Further
that map can be always generated because the maximal par-
tition is the greatest element of the lattice H = (PCin, “),
and therefore can be obtained through successive deriva-
tions. Now we show that the condition not only is suffi-
cient but also necessary. Assume per-absurdo that the max-
imal partition is not weakly privacy-preserving while an-
other partition CA exists including the regions forming an
obfuscated map. Thus, there is at least one feature type ft,
such that: Psens(ft, Ω) > T (ft) while for every cell r ∈ CA:
Psens(ft, r) ≤ T (ft). For Theorem 4.2, that is a contradic-
tion and thus the thesis is true.

Point b) We now show through a counter-example that
a strongly obfuscated map can exist although the reference
space is not strongly privacy-preserving. Assume a uniform
continuous distribution of probability. Consider a partition
consisting of only two cells, say c1 and c2, both with area
10. Assume two feature types ft1 and ft2 with T (ft1) = 0.1
and T (ft2) = 0.9. And assume that c1 contains uniquely
instances of ft1 such that the ft1 coverage is 10% the cell
area while c2 contains only instances of ft2 such that the
ft1 coverage is 90% the cell area. The sensitivity of each
cells is thus:

- Πsens(c1) = Psens(ft1, c1) = 0.1

- Πsens(c2) = Psens(ft1, c2) = 0.9

The partition is thus an obfuscated map. However if we
merge the two cells we obtain a cell c which is not pri-
vacy preserving: Πsens(c) = Psens(ft1, c1)+Psens(ft2, c2) =
0.5 ¢ minft∈{ft1,ft2} T (ft) = T (ft1) = 0.1

International Journal of Advanced in Management, Technology and Engineering Sciences

Volume 8, Issue III, March/2018

ISSN NO : 2249-7455

Page No: 1461

